Day-Ahead Scheduling of Electric Heat Pumps for Peak Shaving in Distribution Grids

  • Marco PauEmail author
  • Jochen Lorenz Cremer
  • Ferdinanda Ponci
  • Antonello Monti
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 921)


In future electric distribution networks, demand flexibility offered by controllable loads will play a key role for the effective transition towards the smart grids. Electric heat pumps are flexible loads whose operation can be controlled, to some extent, to foster the efficient operation of the distribution grids. This paper presents an optimization algorithm that defines a smart day-ahead scheduling of electric heat pumps aimed at achieving power peak shaving in the distribution grid, while providing customers with the desired thermal comfort over the day. The proposed optimization relies upon a Mixed Integer Linear Programming approach and allows defining both the time schedule and the operating points of the heat pump, guaranteeing an energy efficient solution for the customers. Performed tests show the benefits achievable by means of the proposed optimal scheduling both at the distribution grid level and at the customer side, proving the goodness of the conceived solution.


Electric heat pumps Demand Side Management Power peak shaving Optimal scheduling Mixed integer linear programming 


  1. 1.
    Farhangi, H.: The path of the smart grid. IEEE Power Energy Mag. 8(1), 18–28 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Barton, J., Huang, S., Infield, D., Leach, M., Ogunkunle, D., Torriti, J., Thomson, M.: The evolution of electricity demand and the role for demand side participation, in buildings and transport. Energy Policy 52, 85–102 (2013)CrossRefGoogle Scholar
  3. 3.
    Fan, J., Borlase, S.: The evolution of distribution. IEEE Power Energy Mag. 7(2), 63–68 (2009)CrossRefGoogle Scholar
  4. 4.
    Farhangi, H.: A road map to integration: perspectives on smart grid development. IEEE Power Energy Mag. 12(3), 52–66 (2014)CrossRefGoogle Scholar
  5. 5.
    Palensky, P., Dietrich, D.: Demand side management: demand response, intelligent energy systems, and smart loads. IEEE Trans. Ind. Inf. 7(3), 381–388 (2011)CrossRefGoogle Scholar
  6. 6.
    Murthy Balijepalli, V.S.K., Pradhan, V., Khaparde, S.A., Shereef, R.M.: Review of demand response under smart grid paradigm. In: Innovative Smart Grid Technologies – India (ISGT India), Kollam, pp. 236–243 (2011)Google Scholar
  7. 7.
    Logenthiran, T., Srinivasan, D., Shun, T.Z.: Demand side management in smart grid using heuristic optimization. IEEE Trans. Smart Grid 3(3), 1244–1252 (2012)CrossRefGoogle Scholar
  8. 8.
    Malík, O., Havel, P.: Active demand-side management system to facilitate integration of RES in low-voltage distribution networks. IEEE Trans. Sustain. Energy 5(2), 673–681 (2014)CrossRefGoogle Scholar
  9. 9.
    Caprino, D., Della Vedova, M.L., Facchinetti, T.: Peak shaving through real-time scheduling of household appliances. Energy Build. 75, 133–148 (2014)CrossRefGoogle Scholar
  10. 10.
    Graditi, G., Di Silvestre, M.L., Gallea, R., Riva Sanseverino, E.: Heuristic-based shiftable loads optimal management in smart micro-grids. IEEE Trans. Ind. Inf. 11(1), 271–280 (2015)CrossRefGoogle Scholar
  11. 11.
    Klaassen, E., Kobus, C., Frunt, J., Slootweg, H.: Load shifting potential of the washing machine and tumble dryer. In: 2016 IEEE International Energy Conference (ENERGYCON), Leuven, pp. 1–6 (2016)Google Scholar
  12. 12.
    Mattlet, B., Maun, J.C.: Assessing the benefits for the distribution system of a scheduling of flexible residential loads. In: 2016 IEEE International Energy Conference (ENERGYCON), Leuven, pp. 1–6 (2016)Google Scholar
  13. 13.
    Hayes, B., Melatti, I., Mancini, T., Prodanovic, M., Tronci, E.: Residential demand management using individualized demand aware price policies. IEEE Trans. Smart Grid 8(3), 1284–1294 (2017)CrossRefGoogle Scholar
  14. 14.
    Strbac, G.: Demand side management: benefits and challenges. Energy Policy 36(12), 4419–4426 (2008)CrossRefGoogle Scholar
  15. 15.
    Zhang, N., Ochoa, L. F., Kirschen, D. S.: Investigating the impact of demand side management on residential customers. In: 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies, Manchester, pp. 1–6 (2011)Google Scholar
  16. 16.
    US Federal Energy Regulatory Commission: Assessment of Demand Response and Advanced Metering. Technical report, Washington DC, USA (2011)Google Scholar
  17. 17.
    Smart Energy Demand Coalition: Mapping Demand Response in Europe Today. Technical report, Brussels (2015)Google Scholar
  18. 18.
    Ecofys – BUIDE12080: Heat Pump Implementation Scenarios Until 2030. Technical report, Cologne (2013)Google Scholar
  19. 19.
    Campillo, J., Wallin, F., Vassileva, I., Dahlquist, E.: Electricity demand impact from increased use of ground sourced heat pumps. In: 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), Berlin, pp. 1–7 (2012)Google Scholar
  20. 20.
    Love, J., Smith, A.Z.P., Watson, S., Oikonomou, E., Summerfield, A., Gleeson, C., Biddulph, P., Chiu, L.F., Wingfield, J., Martin, C., Stone, A., Lowe, R.: The addition of heat pump electricity load profiles to GB electricity demand: evidence from a heat pump field trial. Appl. Energy 204, 332–342 (2017)CrossRefGoogle Scholar
  21. 21.
    Akmal, M., Fox, B.: Modelling and simulation of underfloor heating system supplied from heat pump. In: 18th International Conference on Computer Modelling and Simulation (UKSim), Cambridge, pp. 246–251 (2016)Google Scholar
  22. 22.
    Good, N., Zhang, L., Navarro-Espinosa, A., Mancarella, P.: Physical modeling of electro-thermal domestic heating systems with quantification of economic and environmental costs. In: Eurocon 2013, Zagreb, pp. 1164–1171 (2013)Google Scholar
  23. 23.
    Zhang, L., Good, N, Navarro-Espinosa, A., Mancarella, P.: Modelling of household electro-thermal technologies for demand response applications. In: IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), Istanbul, pp. 1–6 (2014)Google Scholar
  24. 24.
    Arteconi, A., Hewitt, N.J., Polonara, F.: Domestic demand-side management (DSM): role of heat pumps and thermal energy storage (TES) systems. Appl. Therm. Eng. 51(1), 155–165 (2013)CrossRefGoogle Scholar
  25. 25.
    Arteconi, A., Hewitt, N.J., Polonara, F.: State of the art of thermal storage for demand-side management. Appl. Energy 93, 371–389 (2012)CrossRefGoogle Scholar
  26. 26.
    Diekerhof, M., Vorkampf, S., Monti, A.: Distributed optimization algorithm for heat pump scheduling. In: IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), Istanbul, pp. 1–6 (2014)Google Scholar
  27. 27.
    Diekerhof, M., Schwarz, S., Monti, A.: Distributed optimization for electro-thermal heating units. In: IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe), Ljubljana, pp. 1–6 (2016)Google Scholar
  28. 28.
    Molitor, C., Ponci, F., Monti, A., Cali, D., Müller, D.: Consumer benefits of electricity-price-driven heat pump operation in future smart grids. In: IEEE International Conference on Smart Measurements of Future Grids (SMFG), Bologna, pp. 75–78 (2011)Google Scholar
  29. 29.
    Loesch, M., Hufnagel, D., Steuer, S., Faßnacht, T., Schmeck, H.: Demand side management in smart buildings by intelligent scheduling of heat pumps. In: IEEE International Conference on Intelligent Energy and Power Systems (IEPS), Kyiv, pp. 1–6 (2014)Google Scholar
  30. 30.
    Bhattarai, B.P., Bak-Jensen, B., Pillai, J.R., Maier, M.: Demand flexibility from residential heat pump. In: IEEE PES General Meeting Conference & Exposition, National Harbor, MD, pp. 1–5 (2014)Google Scholar
  31. 31.
    Csetvei, Z., Østergaard, J., Nyeng, P.: Controlling price-responsive heat pumps for overload elimination in distribution systems. In: 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies, Manchester, pp. 1–8 (2011)Google Scholar
  32. 32.
    Zhang, L., Chapman, N., Good, N., Mancarella, P.: Exploiting electric heat pump flexibility for renewable generation matching. In: IEEE Manchester PowerTech, Manchester, pp. 1–6 (2017)Google Scholar
  33. 33.
    De Angelis, F., Boaro, M., Fuselli, D., Squartini, S., Piazza, F., Wei, Q.: Optimal home energy management under dynamic electrical and thermal constraints. IEEE Trans. Ind. Inf. 9(3), 1518–1527 (2013)CrossRefGoogle Scholar
  34. 34.
    Nielsen, K.M., Pedersen, T.S., Andersen, P.: Heat pumps in private residences used for grid balancing by demand response methods. In: IEEE PES Transmission and Distribution Conference and Exposition (T&D), Orlando, FL, pp. 1–6 (2012)Google Scholar
  35. 35.
    Cremer, J.L., Pau, M., Ponci, F., Monti, A.: Optimal scheduling of heat pumps for power peak shaving and customers thermal comfort. In: Proceeding of the 6th International Conference on Smart Cities and Green ICT Systems (SMARTGREENS), Porto, pp. 23–34 (2017)Google Scholar
  36. 36.
    Pau, M., Cremer J. L., Ponci, F., Monti, A.: Impact of customers flexibility in heat pumps scheduling for demand side management. In: 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Milan, pp. 1–6 (2017)Google Scholar
  37. 37.
    Hedman, K.W., O’Neill, R.P., Oren, S.S.: Analyzing valid inequalities of the generation unit commitment problem. In: IEEE/PES Power Systems Conference and Exposition, Seattle, pp. 1–6 (2009)Google Scholar
  38. 38.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marco Pau
    • 1
    Email author
  • Jochen Lorenz Cremer
    • 2
  • Ferdinanda Ponci
    • 1
  • Antonello Monti
    • 1
  1. 1.Institute for Automation of Complex Power Systems, E.ON Energy Research CenterRWTH Aachen UniversityAachenGermany
  2. 2.Department of Electrical and Electronic EngineeringImperial CollegeLondonUK

Personalised recommendations