Advertisement

Classification of Automotive Electric/Electronic Features and the Consequent Hierarchization of the Logical System Architecture

From Functional Chains to Functional Networks
  • Johannes Bach
  • Stefan Otten
  • Eric Sax
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 921)

Abstract

In the established Automotive Systems Engineering (ASE) practice, an important factor in handling the complexity of product development is the partitioning of the vehicle into different domains. The current technological advances enable increasingly complex features for assisted and automated driving that reach across these different domains and are difficult to handle by the existing approaches. To cope with these challenges, new innovative methods, procedures and techniques are required that integrate well with the established practice. In this contribution, we analyze existing and future automotive features and classify them in a comprehensive taxonomy. Based on this characterization, established industrial and new research approaches for logical system architectures are consolidated. The introduction of new levels of hierarchy in the logical system architecture facilitates the attribution of specific design schemes and engineering approaches to the related functional elements. This approach facilitates the management of features with high internal variety and wide distribution over several subsystems. The systematic approach provides a novel rationale for the evolution from functional chains to functional networks in the automotive industry.

References

  1. 1.
    Adler, N., Hillenbrand, M., Müller-Glaser, K.D., Metzker, E., Reichmann, C.: Graphically notated fault modeling and safety analysis in the context of electric and electronic architecture development and functional safety. In: 2012 23rd IEEE International Symposium on Rapid System Prototyping (RSP), pp. 36–42, August 2012Google Scholar
  2. 2.
    Aeberhard, M., et al.: Experience, results and lessons learned from automated driving on Germany’s highways. IEEE Intell. Transp. Syst. Mag. 7(1), 42–57 (2015)CrossRefGoogle Scholar
  3. 3.
    Ahmed, M., Svaricek, F.: Preview optimal control of vehicle semi-active suspension based on partitioning of chassis acceleration and tire load spectra. In: 2014 European Control Conference (ECC), pp. 1669–1674, June 2014Google Scholar
  4. 4.
    ATESST2 Consortium: EAST-ADL Domain Model Specification, 2.1.12 (edn.) (2013)Google Scholar
  5. 5.
    Automotive-SIG: Automotive SPICE Process Assessment/Reference Model. VDA QMC, Berlin, Germany, 3.0 edn., July 2015. http://www.automotivespice.com/
  6. 6.
    AUTOSAR development cooperation: Specification of RTE. Munich, 4.2.1 edn., July 2015. https://www.autosar.org/specifications/release-42/
  7. 7.
    Bach, J., Otten, S., Sax, E.: A taxonomy and systematic approach for automotive system architectures - from functional chains to functional networks. In: 3rd International Conference on Vehicle Technology and Intelligent Transport Systems (VEHITS), Porto (2017)Google Scholar
  8. 8.
    Baldessari, R., et al.: CAR 2 CAR Communication Consortium Manifesto. CAR 2 CAR Communication Consortium, Brussels, 1.1 (edn.), August 2007Google Scholar
  9. 9.
    Bauer, E., et al.: PRORETA 3: an integrated approach to collision avoidance and vehicle automation. Automatisierungstechnik 60, 755–765 (2012)CrossRefGoogle Scholar
  10. 10.
    Bauer, K.L., Gauterin, F.: A two-layer approach for predictive optimal cruise control. In: SAE 2016 World Congress and Exhibition (2016)Google Scholar
  11. 11.
    Bauer, K.L., Gauterin, F.: A two-layer approach for predictive optimal cruise control. In: SAE Technical Paper 2016–01-0634 (2016)Google Scholar
  12. 12.
    Bechler, M., Makeschin, L.: Reichweitenschätzung für elektrofahrzeuge, September 2015. http://google.com/patents/DE102014204308A1?cl=de dE Patent App. DE201,410,204,308
  13. 13.
    Becker, J., Colas, M.-B.A., Nordbruch, S., Fausten, M.: Bosch’s vision and roadmap toward fully autonomous driving. In: Meyer, G., Beiker, S. (eds.) Road Vehicle Automation. LNM, pp. 49–59. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-05990-7_5CrossRefGoogle Scholar
  14. 14.
    Bengler, K., Dietmayer, K., Färber, B., Maurer, M., Stiller, C., Winner, H.: Three decades of driver assistance systems. IEEE Intell. Transp. Syst. Mag. 6(4), 6–22 (2014)CrossRefGoogle Scholar
  15. 15.
    Bhave, A., Krogh, B.H., Garlan, D., Schmerl, B.: View consistency in architectures for cyber-physical systems. In: 2011 IEEE/ACM International Conference on Cyber-Physical Systems (ICCPS), pp. 151–160, April 2011Google Scholar
  16. 16.
    Bogenrieder, R., Fehring, M., Bachmann, R.: Pre-safe in rear-end collision situations. In: Proceedings 21st International Technical Conference on the Enhanced Safety of Vehicles, Stuttgart (2009)Google Scholar
  17. 17.
    Boll, B., Stinus, J., Salecker, M., Schneider, G.: Hill holder device for a motor vehicle, January 2004. https://www.google.com/patents/US6679810 US Patent 6,679,810
  18. 18.
    Broström, R., Engström, J., Agnvall, A., Markkula, G.: Towards the next generation intelligent driver information system (IDIS): the Volvo car interaction manager concept. In: Proceedings of the 2006 ITS World Congress, p. 32 (2006)Google Scholar
  19. 19.
    Buechel, M., et al.: An automated electric vehicle prototype showing new trends in automotive architectures. In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems, pp. 1274–1279, September 2015Google Scholar
  20. 20.
    Coelingh, E., Eidehall, A., Bengtsson, M.: Collision warning with full auto brake and pedestrian detection-a practical example of automatic emergency braking. In: 2010 13th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 155–160. IEEE (2010)Google Scholar
  21. 21.
    Conradi, P.: Reichweitenprognose für elektromobile. Vernetztes Automobil, pp. 179–186 (2014)Google Scholar
  22. 22.
    Cramer, S., Lange, A., Bengler, K.: Path planning and steering control concept for a cooperative lane change maneuver according to the h-mode concept. In: 7. Tagung Fahrerassistenzsysteme, November 2015Google Scholar
  23. 23.
    Dagan, E., Mano, O., Stein, G., Shashua, A.: Forward collision warning with a single camera. In: IEEE Intelligent Vehicles Symposium, pp. 37–42, June 2004Google Scholar
  24. 24.
    Daniel, J., Lauffenburger, J.P.: Fusing navigation and vision information with the transferable belief model: application to an intelligent speed limit assistant. Inf. Fusion 18, 62–77 (2014)CrossRefGoogle Scholar
  25. 25.
    Dimig, S., et al.: Steering column lock apparatus and method, June 2003. https://www.google.com/patents/US6571587. US Patent 6,571,587
  26. 26.
    Dix, P., Bojarski, M.: Reprogrammable vehicle access control system, December 2004. https://www.google.com/patents/US20040263316. US Patent App. 10/602,750
  27. 27.
    Fawcett, J., Robinson, P.: Adaptive routing for road traffic. IEEE Comput. Graph. Appl. 20(3), 46–53 (2000)CrossRefGoogle Scholar
  28. 28.
    Flemisch, F.O., Bengler, K., Bubb, H., Winner, H., Bruder, R.: Towards cooperative guidance and control of highly automated vehicles: H-mode and conduct-by-wire. Ergonomics 57(3), 343–360 (2014).  https://doi.org/10.1080/00140139.2013.869355. pMID: 24559139CrossRefGoogle Scholar
  29. 29.
    Fuerst, S.: AUTOSAR the next generation - the adaptive platform. In: CARS Critical Automotive applications: Robustness & Safety in 11th EDCC European Dependable Computing Conference (2015)Google Scholar
  30. 30.
    Gemeinschaftswerk, siehe Autorenliste: Bosch Automotive Electrics and Automotive Electronics, vol. 5. Robert Bosch GmbH, Plochingen (2007)Google Scholar
  31. 31.
    Golding, A.: Automobile navigation system with dynamic traffic data, August 1999. https://www.google.com/patents/US5933100. US Patent 5,933,100
  32. 32.
    Granier, E.: Device and method for emergency call, March 2004. https://www.google.com/patents/US6711399 US Patent 6,711,399
  33. 33.
    Haas, W., Langjahr, P.: Cross-domain vehicle control units in modern E/E architectures. In: 16. Internationales Stuttgarter Symposium, pp. 1619–1627 (2016)Google Scholar
  34. 34.
    Holder, S., Hoerwick, M., Gentner, H.: Funktionsübergreifende szeneninterpretation zur vernetzung von fahrerassistenzsystemen. In: AAET - Automatisiertes und vernetztes Fahren (2012)Google Scholar
  35. 35.
    Ishida, S., Gayko, J.E.: Development, evaluation and introduction of a lane keeping assistance system. In: Intelligent Vehicles Symposium, pp. 943–944. IEEE, June 2004Google Scholar
  36. 36.
    Kaempchen, N., Schiele, B., Dietmayer, K.: Situation assessment of an autonomous emergency brake for arbitrary vehicle-to-vehicle collision scenarios. IEEE Trans. Intell. Transp. Syst. 10(4), 678–687 (2009)CrossRefGoogle Scholar
  37. 37.
    Katzwinkel, R., et al.: Handbuch Fahrerassistenzsysteme. Bremsenbasierte Assistenzfunktionen, pp. 471–477. Vieweg & Teubner Verlag, Springer Fachmedien, Wiesbaden (2012)Google Scholar
  38. 38.
    Kim, J.W., Lee, K.J., Ahn, H.S.: Development of software component architecture for motor-driven power steering control system using AUTOSAR methodology. In: 2015 15th International Conference on Control, Automation and Systems (ICCAS), pp. 1995–1998, October 2015Google Scholar
  39. 39.
    Kleine-Besten, T., Kersken, U., Pöchmüller, W., Schepers, H.: Handbuch Fahrerassistenzsysteme. Navigation und Telematik, pp. 599–624. Vieweg & Teubner Verlag, Springer Fachmedien, Wiesbaden (2012)CrossRefGoogle Scholar
  40. 40.
    Korsiakoff, A., Sweet, W.N., Seymour, S.J., Biemer, S.M.: Systems Engineering Principles and Practice. Wiley, Hoboken (2011)CrossRefGoogle Scholar
  41. 41.
    Kulkarni, M., Shim, T., Zhang, Y.: Shift dynamics and control of dual-clutch transmissions. Mech. Mach. Theory 42(2), 168–182 (2007). http://www.sciencedirect.com/science/article/pii/S0094114X06000565CrossRefGoogle Scholar
  42. 42.
    Kuroda, S., Kiyomiya, T., Matsubara, A., Kitajima, S.: Engine automatic start stop control apparatus, January 2003. https://www.google.com/patents/US6504259. US Patent 6,504,259
  43. 43.
    Leen, G., Heffernan, D.: Expanding automotive electronic systems. Computer 35(1), 88–93 (2002)CrossRefGoogle Scholar
  44. 44.
    Liebemann, E.K., Meder, K., Schuh, J., Nenninger, G.: Safety and performance enhancement: the bosch electronic stability control (ESP). SAE Paper 2004, 21–0060 (2004)Google Scholar
  45. 45.
    Lundquist, C., Reinelt, W., Enqvist, O.: Back driving assistant for passenger cars with trailer. In: SAE 2006 World Congress & Exhibition (2006)Google Scholar
  46. 46.
    Majeed, K.N.: On/off semi-active suspension control, September 1991. https://www.google.com/patents/US5062657. US Patent 5,062,657
  47. 47.
    Matsumoto, S., Kimura, T., Takahama, T., Toyota, H.: Lane keep control for vehicle, April 2003. https://www.google.com/patents/US6556909. US Patent 6,556,909
  48. 48.
    Matthaei, R., Maurer, M.: Autonomous driving - a top-down-approach. Automatisierungstechnik 63(3), 155–167 (2015)CrossRefGoogle Scholar
  49. 49.
    Miller, R.H., Tascillo, A.L.: Blind spot warning system for an automotive vehicle (2005). https://www.google.com/patents/US6859148. US Patent 6,859,148
  50. 50.
    Montemerlo, M., et al.: Junior: the stanford entry in the urban challenge. J. Field Robot. 25(9), 569–597 (2008).  https://doi.org/10.1002/rob.20258CrossRefGoogle Scholar
  51. 51.
    Moon, S., Yi, K., Moon, I.: Design, tuning and evaluation of integrated ACC/CA systems. In: 17th World Congress of the International Federation of Automatic Control (IFAC 2008). IFAC Proceedings Volumes, vol. 41, pp. 8546–8551, July 2008CrossRefGoogle Scholar
  52. 52.
    Müller, T.: Chancen und risiken auf dem weg zum ppilotierte fahren. In: Internationaler Automobil Kongress, October 2016Google Scholar
  53. 53.
    Muñoz-Organero, M., Magaña, V.: Validating the impact on reducing fuel consumption by using an EcoDriving assistant based on traffic sign detection and optimal deceleration patterns. IEEE Trans. Intell. Transp. Syst. 14(2), 1023–1028 (2013)CrossRefGoogle Scholar
  54. 54.
    Naranjo, J.E., Gonzalez, C., Garcia, R., de Pedro, T., Haber, R.E.: Power-steering control architecture for automatic driving. IEEE Trans. Intell. Transp. Syst. 6(4), 406–415 (2005)CrossRefGoogle Scholar
  55. 55.
    Navale, V.M., Williams, K., Lagospiris, A., Schaffert, M., Schweiker, M.A.: (R)evolution of E/E architectures. SAE Int. J. Passeng. Cars Electron. Electr. Syst. 8(2), 282–288 (2015)Google Scholar
  56. 56.
    Nilsson, J., Brännström, M., Coelingh, E., Fredriksson, J.: Lane change maneuvers for automated vehicles. IEEE Trans. Intell. Transp. Syst. PP(99), 1–10 (2016)Google Scholar
  57. 57.
  58. 58.
  59. 59.
    Nordbruch, S., Quast, G., Nicodemus, R., Scheiger, R.: Automated valet parking. In: 7. Tagung Fahrerassistenzsysteme, November 2015Google Scholar
  60. 60.
    Park, J.H., Kim, C.Y.: Wheel slip control in traction control system for vehicle stability. Veh. Syst. Dyn. 31(4), 263–278 (1999)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Pohl, K., Hoenninger, H., Achatz, R., Broy, M.: Model-Based Engineering of Embedded Systems - The SPES 2020 Methodology. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34614-9CrossRefGoogle Scholar
  62. 62.
    Prabhu, S.M., Mosterman, P.J.: Model-based design of a power window system: modeling, simulation and validation. In: Proceedings of IMAC-XXII: A Conference on Structural Dynamics, Society for Experimental Mechanics Inc., Dearborn (2004)Google Scholar
  63. 63.
    Pretschner, A., Broy, M., Krueger, I.H., Stauner, T.: Software engineering for automotive systems: a roadmap. In: FOSE Future of Software Engineering (2007)Google Scholar
  64. 64.
    Rabinovich, V., Alexandrov, N., Alkhateeb, B.: Automotive Antenna Design and Applications. CRC Press, Boca Raton (2010)CrossRefGoogle Scholar
  65. 65.
    Rahimzei, E., Sann, K., Vogel, M.: Kompendium: Li-ionen-batterien. Technical report, VDE Verband der Elektrotechnik (2015)Google Scholar
  66. 66.
    Reif, K.: Automobilelektronik, 5th edn. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-658-05048-1CrossRefGoogle Scholar
  67. 67.
    Reinhardt, D., Kucera, M.: Domain controlled architecture - a new approach for large scale software integrated automotive systems. In: 3rd International Conference on Pervasive Embedded Computing and Communication Systems, pp. 221–226 (2013)Google Scholar
  68. 68.
    Renner, I.: Methodische Unterstützung funktionsorientierter Baukastenentwicklung am Beispiel Automobil. Ph.D. thesis, Technische Universität München, München, May 2007Google Scholar
  69. 69.
    SAE international: Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles, September 2016Google Scholar
  70. 70.
    Schäuffele, J., Zurawka, T.: Automotive Software Engineering - Grundlagen, Prozesse, Methoden und Werzeuge effizient einsetzen, 5 (edn.). Springer Fachmedien Wiesbaden GmbH (2012)Google Scholar
  71. 71.
    Schmitz, C.: Method and apparatus for driver assistance, April 2011. https://www.google.com/patents/US8031063. US Patent 8,031,063
  72. 72.
    Schofield, K., Larson, M., Vadas, K.: Vehicle headlight control using imaging sensor, August 1998. https://www.google.com/patents/US5796094. US Patent 5,796,094
  73. 73.
    Seidel, W.: Process for controlling front or rear spoilers, September 2006. https://www.google.com/patents/US7113855. US Patent 7,113,855
  74. 74.
    Stämpfle, M., Branz, W., et al.: Kollisionsvermeidung im längsverkehr-die vision vom unfallfreien fahren rückt näher. 3. Tagung Aktive Sicherheit durch Fahrerassistenz (2008)Google Scholar
  75. 75.
    Stiller, C., Färber, G., Kammel, S.: Cooperative cognitive automobiles. In: Proceedings of the 2007 IEEE Intelligent Vehicles Symposium, pp. 215–220, June 2007Google Scholar
  76. 76.
    Stolz, W., Kornhaas, R., Sommer, T.: Domain control units - the solution for future E/E architectures? In: SAE Technical Paper 2010–01-0686, pp. 221–226 (2010)Google Scholar
  77. 77.
    Streichert, T., Traub, M.: Elektrik/Elektronik-Architekturen im Kraftfahrzeug - Modellierung und Bewertung von Echtzeitsystemen. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-25478-9CrossRefGoogle Scholar
  78. 78.
    Strobel, S., Rösinger, K., Bröcker, M.: Radikale Innovtionen in derMobilität. Fuzzy-Logik basiertes Energiemanagement fürElektrofahrzeuge, pp. 211–224. Proff, H. (2014)Google Scholar
  79. 79.
    Takagi, M., Asano, T., Yamada, T.: Automotive vehicle with adjustable aerodynamic accessory and control therefor, March 1989. https://www.google.com/patents/US4810022. US Patent 4,810,022
  80. 80.
    Tas, Ö.S., Kuhnt, F., Zöllner, J.M., Stiller, C.: Functional system architectures towards fully automated driving. In: 2016 IEEE Intelligent Vehicles Symposium (IV) (2016)Google Scholar
  81. 81.
    Tseng, H.E., Ashrafi, B., Madau, D., Brown, T.A., Recker, D.: The development of vehicle stability control at ford. IEEE/ASME Trans. Mechatron. 4(3), 223–234 (1999)CrossRefGoogle Scholar
  82. 82.
    van Zanten, A., Kost, F.: Handbuch Fahrerassistenzsysteme. Bremsenbasierte Assistenzfunktionen, pp. 356–394. Vieweg & Teubner Verlag, Springer Fachmedien, Wiesbaden (2012)Google Scholar
  83. 83.
    Vector Informatik GmbH: PREEvision User Manual Version 8.0. Stuttgart (2016)Google Scholar
  84. 84.
    van der Voort, M., Dougherty, M.S., van Maarseveen, M.: A prototype fuel-efficiency support tool. Transp. Res. Part C: Emerg. Technol. 9(4), 279–296 (2001). http://www.sciencedirect.com/science/article/pii/S0968090X00000383
  85. 85.
    Wahl, H.G.: Optimale Regelung eines prädiktiven Energiemanagements von Hybridfahrzeugen. Ph.D. thesis, Karlsruher Institut für Technologie (2015)Google Scholar
  86. 86.
    Walker, P.D., Zhang, N., Tamba, R.: Control of gear shifts in dual clutch transmission powertrains. Mech. Syst. Signal Process. 25(6), 1923–1936 (2011)CrossRefGoogle Scholar
  87. 87.
    Walter, M., Fechner, T., Hellmann, W., Thiel, R.: Handbuch Fahrerassistenzsysteme. Lane Departure Warning, pp. 543–553. Vieweg & Teubner Verlag, Springer Fachmedien, Wiesbaden (2012)CrossRefGoogle Scholar
  88. 88.
    Weber, J.: Automotive Development Process. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-01253-2CrossRefGoogle Scholar
  89. 89.
    Weber, M., Weisbrod, J.: Requirements engineering in automotive development - experience and challenges. In: IEEE Joint International Conference on Requirements Engineering (RE 2002) (2002)Google Scholar
  90. 90.
    Wiesenthal, M., Collenberg, H., Krimmel, H.: Aktive hinterachskinematik akc - ein beitrag zu fahrdynamik, sicherheit und komfort. In: 17. Aachener Kolloquium Fahrzeug- und Motorentechnik (2008)Google Scholar
  91. 91.
    Willats, R., et al.: Vehicle access control and start system, December 2003. https://www.google.com/patents/US20030222758. US Patent App. 10/348,233
  92. 92.
    Winner, H., Danner, B., Steinle, J.: Handbuch Fahrerassistenzsysteme. Adaptive Cruise Control, pp. 478–521. Vieweg+Teubner Verlag, Wiesbaden (2012).  https://doi.org/10.1007/978-3-8348-8619-4_33CrossRefGoogle Scholar
  93. 93.
    Woestman, J., Patil, P., Stunz, R., Pilutti, T.: Strategy to use an on-board navigation system for electric and hybrid electric vehicle energy management, 26 2002. https://www.google.com/patents/US6487477. US Patent 6,487,477
  94. 94.
    Wolf, D., Hess, G., Twichel, J.: Automatic start/stop system and method for locomotive engines, September 2005. https://www.google.com/patents/US6941218. US Patent 6,941,218
  95. 95.
    Zechmann, J., Irion, A.: Method and apparatus for controlling the brake system of a vehicle, January 2000. https://www.google.com/patents/US6009984. US Patent 6,009,984
  96. 96.
    Zhang, R., Krishnan, A.: Using delta model for collaborative work of industrial large-scaled E/E architecture models. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 714–728. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24485-8_52CrossRefGoogle Scholar
  97. 97.
    Zhang, Y., Wang, W., Kobayashi, Y., Shirai, K.: Remaining driving range estimation of electric vehicle. In: 2012 IEEE International Electric Vehicle Conference, pp. 1–7, March 2012Google Scholar
  98. 98.
    Ziegler, J., et al.: Making bertha drive - an autonomous journey on a historic route. IEEE Intell. Transp. Syst. Mag. 6(2), 8–20 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.FZI Research Center for Information TechnologyKarlsruheGermany

Personalised recommendations