Advertisement

Evaluation of Probatio 0.2

  • Filipe Calegario
Chapter
Part of the Computational Synthesis and Creative Systems book series (CSACS)

Abstract

In this chapter, we present the version 0.2 of Probatio and its evolution from version 0.1. Besides, we discuss the quantitative and qualitative results of an experiment comparing the functional prototyping toolkit and a generic sensor toolkit. The results show that Probatio helped to reduce the assembly time of the prototypes resulting in more cycles of idea exploration and validation. We discuss three user profiles that emerged from the qualitative analysis: the builder, the virtuoso, and the experimentalists. Finally, we conclude that Probatio is more suitable for experimentalists because of its rapid way of achieving musical results.

References

  1. Ängeslevä, J., et al.: The results of rethinking prototyping. In: Gengnagel, C., Nagy, E., Stark, R. (eds.) Rethink! Prototyping, pp. 201–210. Springer International Publishing, Cham (2016a)CrossRefGoogle Scholar
  2. Ängeslevä, J., et al.: Beyond prototyping. In: Gengnagel, C., Nagy, E., Stark, R. (eds.) Rethink! Prototyping, pp. 161–199. Springer International Publishing, Cham (2016b)CrossRefGoogle Scholar
  3. Bangor, A., Kortum, P.T., Miller, J.T.: An empirical evaluation of the system usability scale. Int. J. Hum. Comput. Interact. 24(March 2015), 574–594 (2008)CrossRefGoogle Scholar
  4. Barbosa, J., et al.: Designing DMIs for Popular Music in the Brazilian Northeast: Lessons Learned. In: Proceedings of the International Conference on New Interfaces for Musical Expression. Anais… Bâton Rouge, US (2015a)Google Scholar
  5. Beaudouin-Lafon, M.: Instrumental interaction: an interaction model for designing post-WIMP user interfaces. In: Proceedings of the 18th International Conference on Human Factors in Computing Systems – CHI ‘00, vol. 2, n. 1, pp. 446–453 (2000)Google Scholar
  6. Beaudouin-Lafon, M., Mackay, W.E.: Prototyping methods and tools. In: Jacko, J.A., Sears, A. (eds.) The Human-Computer Interaction Handbook, pp. 1006–1031. Lawrence-Erlbaum Associates, New York (2002)Google Scholar
  7. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol. 3(May 2015), 77–101 (2006)CrossRefGoogle Scholar
  8. Brooke, J.: SUS: a quick and dirty usability scale. In: Jordan, P.W., Thomas, B., McClelland, I.L., Weerdmeester, B. (eds.) Usability Evaluation in Industry, pp. 189–194. CRC Press, Bristol, PA (1996)Google Scholar
  9. Brooke, J.: SUS: a retrospective. J. Usability Stud. 8(2), 29–40 (2013)Google Scholar
  10. Camburn, B., et al.: A systematic method for design prototyping. J. Mech. Des. 137(8), 81102 (2015)CrossRefGoogle Scholar
  11. Clason, D.L., Dormody, T.J.: Analyzing data measured by individual Likert-type items. J. Agric. Educ. 35(4), 31–35 (1994)CrossRefGoogle Scholar
  12. Cook, P.R., Scavone, G.P.: Audio Anecdotes: A Cookbook of Audio Algorithms and Techniques, chapter The Synthesis ToolKit (STK) in C++. AK Peters, Natick, MA (2004)Google Scholar
  13. Epstein, S., et al.: Individual differences in intuitive-experiential and analytical-rational thinking styles. J. Pers. Soc. Psychol. 71(2), 390–405 (1996)CrossRefGoogle Scholar
  14. Fouse, A.S., et al.: ChronoViz: A system for supporting navigation of time-coded data. In: CHI 2011. Anais… (2011)Google Scholar
  15. Guiard, Y.: Asymmetric division of labor in human skilled bimanual action: the kinematic chain as a model. J. Mot. Behav. 19(4), 486–517 (1987)CrossRefGoogle Scholar
  16. Von Hippel, E.: PERSPECTIVE: user toolkits for innovation. J. Prod. Innov. Manag. 18(4), 247–257 (2001)CrossRefGoogle Scholar
  17. Jordan, B., Henderson, A.: Interaction analysis: foundations and practice. J. Learn. Sci. 4(1), 39–103 (1995)CrossRefGoogle Scholar
  18. Kaptein, M.C., Nass, C., Markopoulos, P.: Powerful and consistent analysis of likert-type rating scales. In: Proceedings of the 28th International Conference on Human Factors in Computing Systems – CHI 2010, pp. 2391–2394 (2010)Google Scholar
  19. Law, E.L.-C., et al.: Understanding, scoping and defining user experience: a survey approach. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Anais… ACM (2009)Google Scholar
  20. Levitin, D.J., Mcadams, S., Adams, R.L.: Control parameters for musical instruments: a foundation for new mappings of gesture to sound. Organised Sound. 7(2), 171–189 (2002)CrossRefGoogle Scholar
  21. Lewis, J.R., Sauro, J.: The factor structure of the System Usability Scale. In: Proceedings of the Human–Computer Interaction International Conference (HCII 2009), San Diego, CA, USA (2009)Google Scholar
  22. Malloch, J., Sinclair, S., Wanderley, M.M.: Distributed tools for interactive design of heterogeneous signal networks. Multimed. Tools Appl. 74(15), 5683–5707 (2014)CrossRefGoogle Scholar
  23. Miranda, E.R., Wanderley, M.M.: New Digital Musical Instruments: Control and Interaction Beyond the Keyboard. A-R Editions, Middleton, WI (2006)Google Scholar
  24. Morey, R.D.: Confidence intervals from normalized data: a correction to Cousineau (2005). Tutor. Quant. Methods Psychol. 4(2), 61–64 (2008)CrossRefGoogle Scholar
  25. Mulder, A.: The I-Cube System: moving towards sensor technology for artists. In: Proceedings of the ISEA. Anais… (1995)Google Scholar
  26. Nakamura, J., Csikszentmihalyi, M.: The concept of flow. In: Csikszentmihalyi, M. (ed.) Flow and the Foundations of Positive Psychology, pp. 239–263. Springer, Dordrecht (2014)Google Scholar
  27. Preece, J., et al.: Interaction Design: Beyond Human-Computer Interaction, 4th edn. Wiley, Chichester (2015)Google Scholar
  28. Resnick, M., Silverman, B.: Some reflections on designing construction kits for kids. In: Proceeding of the 2005 Conference on Interaction Design and Children (IDC’05), pp. 117–122 (2005)Google Scholar
  29. Sadler, J.: The Anatomy of Creative Computing: Enabling Novices to Prototype Smart Devices. Stanford University, Stanford, CA (2016)Google Scholar
  30. Sadler, J., et al.: Building blocks of the maker movement: modularity enhances creative confidence during prototyping. In: Plattner, H., Meinel, C., Leifer, L. (eds.) Design Thinking Research, pp. 141–154. Springer International Publishing, Cham (2016a)CrossRefGoogle Scholar
  31. Sadler, J., et al.: Can anyone make a smart device?: Evaluating the usability of a prototyping toolkit for creative computing. In: Plattner, H., Meinel, C., Leifer, L. (eds.) Design Thinking Research, Understanding Innovation, pp. 147–160. Springer International Publishing, Cham (2016b)Google Scholar
  32. Saldaña, J.: The Coding Manual for Qualitative Researchers. SAGE, London (2009)Google Scholar
  33. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures, 3rd edn. CRC Press, Hoboken (2003)CrossRefGoogle Scholar
  34. Trueman, D., Dubois, R.L.: Percolate: a collection of synthesis, signal processing, and image processing objects. Available in: <https://github.com/Cycling74/percolate> (2015). Accessed 21 Feb 2017
  35. Vertegaal, R., Ungvary, T., Kieslinger, M.: Towards a musician’s cockpit: transducers, feedback and musical function. In: Proceedings of the International Computer Music Conference. Anais… (1996)Google Scholar
  36. Wiethoff, A.: Prototyping Tools for Hybrid Interactions. Ludwig-Maximilians-Universität München, Munich (2012)Google Scholar
  37. Xambó, A.: Tabletop Tangible Interfaces for Music Performance: Design and Evaluation. The Open University, Milton Keynes (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Filipe Calegario
    • 1
  1. 1.Centro de Informática (CIn-UFPE)Federal University of PernambucoRecifeBrazil

Personalised recommendations