Advertisement

Proposition

  • Filipe Calegario
Chapter
Part of the Computational Synthesis and Creative Systems book series (CSACS)

Abstract

This chapter explains the decisions we made concerning the scope and presents our proposition that consists of a concept, a method, and a toolkit. We discuss the hypothesis of “instrumental inheritance,” the related concepts found in literature, and we speculate its application in the context of the popularization of musical instruments. We explain the idea generation method called morphological analysis and apply it to the context of musical instruments. Further, we display the development process of the experimentation toolkit for DMI functional prototyping.

References

  1. Banzi, M.: Getting Started with Arduino. O’Reilly Media, Sebastopol (2009)Google Scholar
  2. Basalla, G.: The Evolution of Technology. Cambridge University Press, Cambridge (1989)CrossRefGoogle Scholar
  3. Cadoz, C., Wanderley, M.M.: Gesture – music. In: Wanderley, M.M., Battier, M. (eds.) Trends in gestural control of music, pp. 71–94. Ircam Centre Pompidou, Paris (2000)Google Scholar
  4. Cross, N.: Engineering Design Methods: Strategies for Product Design, 3rd edn. Wiley, Chichester (2000)Google Scholar
  5. Curtis, A.: Rhetoric of Flat Design and Skeuomorphism in Apple’s iOS Graphical User Interface. University of Rhose Island, South Kingstown (2015)Google Scholar
  6. Dahl, D.W., Moreau, P.: The influence and value of analogoical thinking during new product ideation. J. Mark. Res. 39(1), 47–60 (2002)CrossRefGoogle Scholar
  7. Dougherty, D.: The maker movement. Innovations. 7(3), 11–14 (2012)CrossRefGoogle Scholar
  8. Fantinatto, R.: I dream of wires. Monoduo Films, Berlin (2014)Google Scholar
  9. Fels, S.S., Gadd, A., Mulder, A.: Mapping transparency through metaphor: towards more expressive musical instruments. Organised Sound. 7(2), 109–126 (2002)CrossRefGoogle Scholar
  10. Gelineck, S., Serafin, S.: A practical approach towards an exploratory framework for physical modeling. Comput. Music. J. 34, 51–66 (2010a)CrossRefGoogle Scholar
  11. Gibson, J.J.: The Ecological Approach to Visual Perception. Lawrence Erlbaum, Mahwah, NJ (1979)Google Scholar
  12. Gurevich, M., Marquez-Borbon, A., Stapleton, P.: Playing with constraints: stylistic variation with a simple electronic instrument. Comput. Music. J. 36(1), 23–41 (2012)CrossRefGoogle Scholar
  13. Helminen, P., Ainoa, J., Mäkinen, S.: Designing user innovation toolkits: exploring the interrelation between solution space and module library. Int. J. Des. Creat. Innov. 4, 1–19 (2015)Google Scholar
  14. Hey, J., et al.: Analogies and metaphors in creative design. Int. J. Eng. Educ. 24(2), 283–294 (2008)Google Scholar
  15. Hood, M.: The Ethnomusicologist. Kent State University Press, New York (1982)Google Scholar
  16. Jordà, S.: Interactive music systems for everyone: exploring visual feedback as a way for creating more intuitive, efficient and learnable instruments. In: Proceedings of the Stockholm Music Acoustics. Anais… (2003)Google Scholar
  17. Kaptelinin, V.: Affordances. In: Soergaard, M., Dam, R.F. (eds.) The Encyclopedia of Human-Computer Interaction, 2nd edn. Interaction Design Foundation, Aarhus (2014)Google Scholar
  18. Knight, R.C.: The KNIGHT REVISION of HORNBOSTEL-SACHS: A New Look at Musical Instrument Classification. Oberlin College Conservatory of Music, 2015, Rev. 2017. Available in: <http://www2.oberlin.edu/faculty/rknight/Organology/KnightRev2015.pdf> (2015)
  19. Knorig, A.: Design Tools Design. FH Potsdam, Potsdam (2008)Google Scholar
  20. Maestracci, B., Frechin, J., Petrevski, U.: Modular musical objects towards embodied control of digital music. In: Proceedings of the International Conference on Tangible, Embedded and Embodied Interaction (TEI). Anais… (2011)Google Scholar
  21. Magnusson, T., Mendieta, E.H.: The acoustic, the digital and the body: a survey on musical instruments. In: Proceedings of the International Conference on New Interfaces for Musical Expression, pp. 94–99 (2007a)Google Scholar
  22. Magnusson, T., Mendieta, E.H.E.: The acoustic, the digital and the body: a survey on musical instruments. In: Proceedings of the International Conference on New Interfaces for Musical Expression, pp. 94–99 (2007b)Google Scholar
  23. Malloch, J., Sinclair, S., Wanderley, M.M.: Distributed tools for interactive design of heterogeneous signal networks. Multimed. Tools Appl. 74(15), 5683–5707 (2014)CrossRefGoogle Scholar
  24. Maloney, T.M.: The family of wood composite materials. For. Prod. J. 46(2), 18 (1996)Google Scholar
  25. Merriam-Webster: Merriam-Webster’s Collegiate Dictionary. Merriam-Webster, Springfield (2004)Google Scholar
  26. MIMO Consortium (Musical Instrument Museums Online): Revision of the Hornbostel-Sachs classification of musical instruments by the MIMO Consortium. Available in: <http://network.icom.museum/cimcim/resources/classification-of-musical-instruments> (2011)
  27. Miranda, E.R., Wanderley, M.M.: New Digital Musical Instruments: Control and Interaction Beyond the Keyboard. A-R Editions, Middleton, WI (2006)Google Scholar
  28. Norman, D.A.: The Design of Everyday Things: Revised and Expanded Edition. Basic Books, New York (2013)Google Scholar
  29. O’Hara, D.: Skeuomorphology and quotation. In: Roussel, M., Borkenhagen, C. (eds.) Creativity of Finding: Figurations of the Quotation, vol. 2, pp. 281–293. Wilhelm Fink, Munich (2012)Google Scholar
  30. O’Modhrain, S., Chafe, C.: Incorporating haptic feedback into interfaces for music applications. In: Proceedings of the International Symposium on Robotics with Applications, World Automation Conference. Anais… (2000)Google Scholar
  31. Pahl, G., et al.: Engineering design: a Systematic Approach. Springer, Berlin (2007)CrossRefGoogle Scholar
  32. Paine, G.: New musical instrument design considerations. MultiMedia, IEEE. 20, 76–84 (2013)CrossRefGoogle Scholar
  33. Ritchey, T.: General morphological analysis: a general method for non-quantified modelling. In: 16th EURO Conference on Operational Analysis, pp. 1–10 (1998)Google Scholar
  34. Sachs, C.: The History of Musical Instruments. W. W. Norton & Company, New York (1940)Google Scholar
  35. Sadler, J., et al.: Building blocks of the maker movement: modularity enhances creative confidence during prototyping. In: Plattner, H., Meinel, C., Leifer, L. (eds.) Design Thinking Research, pp. 141–154. Springer International Publishing, Cham (2016a)CrossRefGoogle Scholar
  36. Sadler, J., et al.: Can anyone make a smart device?: Evaluating the usability of a prototyping toolkit for creative computing. In: Plattner, H., Meinel, C., Leifer, L. (eds.) Design Thinking Research, Understanding Innovation, pp. 147–160. Springer International Publishing, Cham (2016b)Google Scholar
  37. Schmeder, A., Freed, A.: uosc: The open sound control reference platform for embedded devices. In: Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08). Anais… Citeseer (2008)Google Scholar
  38. Shah, J., Kulkarni, S., Vargas-Hernandez, N.: Evaluation of idea generation methods for conceptual design: effectiveness metrics and design of experiments. J. Mech. Des. 122(4), 377–384 (2000)CrossRefGoogle Scholar
  39. Smith, G.F.: Idea-generation techniques: a formulary of active ingredients. J. Creat. Behav. 32(2), 107–134 (1998)CrossRefGoogle Scholar
  40. Tanaka, A., et al.: A survey and thematic analysis approach as input to the design of mobile music GUIs. In: Proceedings of the International Conference on New Interfaces for Musical Expression. Anais… University of Michigan, Ann Arbor (2012a)Google Scholar
  41. Tanaka, A., Altavilla, A., Spowage, N.: Gestural musical affordances. In: Proc. of Sound and Music Computing Conference (SMC), pp. 318–325 (2012b)Google Scholar
  42. Teboul, E.: The transgressive practices of silicon luthiers. In: Miranda, E.R. (ed.) Guide to Unconventional Computing for Music, pp. 85–120. Springer International Publishing, Cham (2017)CrossRefGoogle Scholar
  43. Vasconcelos, L.A., et al.: Investigating real-world design fixation using morphological analysis. In: Design Creativity Workshop. Anais… Chicago: Northwestern University, Evanston (2016)Google Scholar
  44. Walter-Herrmann, J., Büching, C.: FabLab: Of Machines, Makers and Inventors. Transcript, Bielefeld (2014)Google Scholar
  45. Wanderley, M.M.: Instrumentos Musicais Digitais: Gestos, Sensores e Interfaces. In: Ilari, B.S. (ed.) Em Busca da Mente Musical, vol. 60. Editora da Universidade Federal do Paraná, Curitiba (2006)Google Scholar
  46. Wright, M., Freed, A., Momeni, A.: OpenSound control: state of the art 2003. In: Proceedings of the 2003 Conference on New Interfaces for Musical Expression (NIME-03). Anais… Montreal, Canada (2003)Google Scholar
  47. Zappi, V., Mcpherson, A.: Dimensionality and appropriation in digital musical instrument design. In: Proceedings of the International Conference on New Interfaces for Musical Expression. Anais… Goldsmiths, University of London, UK (2014)Google Scholar
  48. Zwicky, F.: The morphological approach to discovery, invention, research and construction. In: Zwicky, F., Wilson, A.G. (eds.) New Methods of Thought and Procedure, pp. 273–297. Springer, Berlin (1967)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Filipe Calegario
    • 1
  1. 1.Centro de Informática (CIn-UFPE)Federal University of PernambucoRecifeBrazil

Personalised recommendations