Advertisement

Topological Baumslag Lemmas

  • Sang-hyun Kim
  • Thomas Koberda
  • Mahan Mj
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2231)

Abstract

This chapter deals with one of the principal technical tools of the monograph, namely an extension of Baumslag’s Lemma. The following are some of the main ingredients in this chapter:
  1. 1.
    A Topological Baumslag Lemma, which gives sufficient conditions to guarantee nontriviality of a word
    $$\displaystyle w (t_1,\cdots , t_k) = g_1 \mu _1(t_1) \cdots g_k \mu _k (t_k) $$
    for large values of the parameters ti. Here the μj(tj)s are one-parameter subgroups of a continuous (possibly analytic) group. The proof is quite general and reminiscent of Tits’ proof (Tits, J Algebra 20(2):250–270, 1972) of the Tits’ alternative for discrete linear groups in that the underlying idea consists of a ping-pong argument.
     
  2. 2.

    The one-parameter subgroups are often (generalizations of) parabolic and hyperbolic one-parameter subgroups of \( \operatorname {\mathrm {PSL}}_2(\mathbb {R})\). To handle elliptic subgroups we use a complexification and Zariski density trick by embedding \( \operatorname {\mathrm {PSL}}_2(\mathbb {R})\) in \( \operatorname {\mathrm {PSL}}_2(\mathbb {C})\) and reduce the elliptic case to the hyperbolic one (Lemma 3.4).

     

References

  1. 4.
    J. Barlev, T. Gelander, Compactifications and algebraic completions of limit groups. J. Anal. Math. 112, 261–287 (2010). MR 2763002MathSciNetCrossRefGoogle Scholar
  2. 8.
    M. Bestvina, K. Fujiwara, Bounded cohomology of subgroups of mapping class groups. Geom. Topol. 6, 69–89 (2002). MR 1914565MathSciNetCrossRefGoogle Scholar
  3. 15.
    B.H. Bowditch, Tight geodesics in the curve complex. Invent. Math. 171(2), 281–300 (2008). MR 2367021 (2008m:57040)MathSciNetCrossRefGoogle Scholar
  4. 19.
    M.R. Bridson, A. Haefliger, Metric Spaces of Non-positive Curvature. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319 (Springer, Berlin, 1999)Google Scholar
  5. 33.
    F. Dahmani, V. Guirardel, D. Osin, Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces. Mem. Am. Math. Soc. 245(1156), v+152 (2017). MR 3589159MathSciNetCrossRefGoogle Scholar
  6. 49.
    É. Ghys, P. de la Harpe (eds.), Sur les groupes hyperboliques d’après Mikhael Gromov. Progress in Mathematics, vol. 83 (Birkhäuser Boston Inc., Boston, 1990). Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988. MR 1086648 (92f:53050)Google Scholar
  7. 53.
    M. Gromov, Hyperbolic groups, in Essays in Group Theory. Mathematical Sciences Research Institute Publications, vol. 8 (Springer, New York, 1987), pp. 75–263CrossRefGoogle Scholar
  8. 54.
    D. Groves, H. Wilton, Conjugacy classes of solutions to equations and inequations over hyperbolic groups. J. Topol. 3(2), 311–332 (2010). MR 2651362 (2012a:20067)MathSciNetCrossRefGoogle Scholar
  9. 55.
    U. Hamenstädt, Bounded cohomology and isometry groups of hyperbolic spaces. J. Eur. Math. Soc. 10(2), 315–349 (2008). MR 2390326Google Scholar
  10. 65.
    A.E. Kent, C.J. Leininger, Subgroups of mapping class groups from the geometrical viewpoint, in In the Tradition of Ahlfors-Bers. IV. Contemporary Mathematics, vol. 432 (American Mathematical Society, Providence, 2007), pp. 119–141. MR 2342811Google Scholar
  11. 66.
    S.-h. Kim, On right-angled Artin groups without surface subgroups. Groups Geom. Dyn. 4(2), 275–307 (2010). MR 2595093 (2011d:20073)Google Scholar
  12. 67.
    S.-h. Kim, T. Koberda, The geometry of the curve graph of a right-angled Artin group. Int. J. Algebra Comput. 24(2), 121–169 (2014). MR 3192368MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sang-hyun Kim
    • 1
  • Thomas Koberda
    • 2
  • Mahan Mj
    • 3
  1. 1.School of MathematicsKorea Institute for Advanced StudySeoulRepublic of Korea
  2. 2.Department of MathematicsUniversity of VirginiaCharlottesvilleUSA
  3. 3.School of MathematicsTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations