• Sang-hyun Kim
  • Thomas Koberda
  • Mahan Mj
Part of the Lecture Notes in Mathematics book series (LNM, volume 2231)


In this monograph, we study finitely generated groups which are classically known to act faithfully on the circle. The purpose of this monograph is to give a systematic construction of uncountable families of actions of these groups which have “essentially different” dynamics. The tools described allow us to construct many exotic actions of classically studied groups, i.e. actions which are not semi-conjugate to the “usual” or “standard” actions of these groups. This monograph is partially expository and partially original. We develop theory as coherently as possible, with some methods that are well-known to experts, and others which to our knowledge are our own.


  1. 2.
    H. Baik, S.-h. Kim, T. Koberda, Unsmoothable group actions on compact one-manifolds. J. Eur. Math. Soc. (to appear)Google Scholar
  2. 22.
    M. Burger, N. Monod, Bounded cohomology of lattices in higher rank Lie groups. J. Eur. Math. Soc. 1(2), 199–235 (1999). MR 1694584 (2000g:57058a)MathSciNetCrossRefGoogle Scholar
  3. 24.
    D. Calegari, Dynamical forcing of circular groups. Trans. Am. Math. Soc. 358(8), 3473–3491 (2006). MR 2218985Google Scholar
  4. 28.
    D. Calegari, A. Walker, Ziggurats and rotation numbers. J. Mod. Dyn. 5(4), 711–746 (2011). MR 2903755Google Scholar
  5. 30.
    A.J. Casson, S.A. Bleiler, Automorphisms of Surfaces After Nielsen and Thurston. London Mathematical Society Student Texts, vol. 9 (Cambridge University Press, Cambridge, 1988), iv+1055. MR 964685Google Scholar
  6. 34.
    P. de la Harpe, Topics in Geometric Group Theory. Chicago Lectures in Mathematics (University of Chicago Press, Chicago, 2000). MR 1786869 (2001i:20081)Google Scholar
  7. 39.
    A. Eskif, J.C. Rebelo, Global rigidity of conjugations for locally non-discrete subgroups of \(\operatorname {Diff}^\omega (S^1)\) (2015). Preprint, arxiv:1507.03855Google Scholar
  8. 41.
    B. Farb, J. Franks, Groups of homeomorphisms of one-manifolds. III. Nilpotent subgroups. Ergodic Theory Dyn. Syst. 23(5), 1467–1484 (2003). MR 2018608 (2004k:58013)MathSciNetCrossRefGoogle Scholar
  9. 46.
    É. Ghys, Classe d’Euler et minimal exceptionnel. Topology 26(1), 93–105 (1987). MR 880511MathSciNetCrossRefGoogle Scholar
  10. 47.
    É. Ghys, Actions de réseaux sur le cercle. Invent. Math. 137(1), 199–231 (1999). MR 1703323 (2000j:22014)MathSciNetCrossRefGoogle Scholar
  11. 56.
    M. Handel, W.P. Thurston, New proofs of some results of Nielsen. Adv. Math. 56(2), 173–191 (1985). MR 788938 (87e:57015)MathSciNetCrossRefGoogle Scholar
  12. 58.
    A. Hinkkanen, Abelian and nondiscrete convergence groups on the circle. Trans. Am. Math. Soc. 318(1), 87–121 (1990). MR 1000145MathSciNetCrossRefGoogle Scholar
  13. 61.
    E. Jorquera, A universal nilpotent group of C 1 diffeomorphisms of the interval. Topol. Appl. 159(8), 2115–2126 (2012). MR 2902746Google Scholar
  14. 68.
    S.-h. Kim, T. Koberda, Free products and the algebraic structure of diffeomorphism groups (2017). ArXiv e-printsGoogle Scholar
  15. 71.
    T. Koberda, Ping-pong lemmas with applications to geometry and topology, in Geometry, Topology and Dynamics of Character Varieties. Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, vol. 23 (World Scientific Publishing, Hackensack, 2012), pp. 139–158. MR 2987617CrossRefGoogle Scholar
  16. 73.
    N. Kovačević, Examples of Möbius-like groups which are not Möbius groups. Trans. Am. Math. Soc. 351(12), 4823–4835 (1999). MR 1473446Google Scholar
  17. 78.
    K. Mann, Rigidity and flexibility of group actions on the circle, in Handbook of Group Actions (2015, to appear)Google Scholar
  18. 87.
    D.W. Morris, Arithmetic groups of higher Q-rank cannot act on 1-manifolds. Proc. Am. Math. Soc. 122(2), 333–340 (1994). MR 1198459 (95a:22014)Google Scholar
  19. 90.
    J. Nielsen, Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen. Acta Math. 50(1), 189–358 (1927). MR 1555256MathSciNetCrossRefGoogle Scholar
  20. 92.
    J. Nielsen, Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen. III. Acta Math. 58(1), 87–167 (1932). MR 1555345MathSciNetCrossRefGoogle Scholar
  21. 103.
    J. Tits, Free subgroups in linear groups. J. Algebra 20(2), 250–270 (1972)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sang-hyun Kim
    • 1
  • Thomas Koberda
    • 2
  • Mahan Mj
    • 3
  1. 1.School of MathematicsKorea Institute for Advanced StudySeoulRepublic of Korea
  2. 2.Department of MathematicsUniversity of VirginiaCharlottesvilleUSA
  3. 3.School of MathematicsTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations