Advertisement

Vegetation Index Based on Genetic Programming for Bare Ground Detection in the Amazon

  • Julián Muñoz
  • Carlos Cobos
  • Martha Mendoza
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10633)

Abstract

Vegetation indices are algebraic combinations of spectral bands produced by satellite. The indices allow different vegetation covers to be identified by contrast evaluation. Vegetation indexes are used mainly in tasks of classification of satellite images, as well as chemical and physical land studies. An example is seen in the Normalized Difference Vegetation Index (NDVI) that shows up live green vegetation. This article describes the process of creating a new vegetation index that enables bare ground identification in the Amazon using genetic programming. It further shows how a threshold is automatically defined for the new index, a threshold that facilitates the task of photointerpretation and is not normally provided for other vegetation indexes. The new index, called BGIGP (Bare Ground Index obtained using Genetic Programming) showed significant values of contrast between the different covers analyzed, being seen to compete well with traditional vegetation indexes such as SR. The performance of BGIGP was also evaluated using the characteristics of 10448-pixel images from the “2017 Kaggle Planet: Understanding the Amazon from Space” competition, to classify bare ground against water, cloudy, primary, cultivation, road, and artisanal mine, obtaining a 93.71% of accuracy.

Keywords

Genetic programming Remote sensing Vegetation index Definition of threshold 

References

  1. 1.
    Hernandez Albarracin, J.F., Dos Santos, J.A., Torres, R.D.S.: Learning to combine spectral indices with genetic programming. In: Proceedings - 2016 29th SIBGRAPI Conference on Graphics, Patterns and Images, SIBGRAPI 2016, pp. 408–415. IEEE (2017)Google Scholar
  2. 2.
    Pencue-Fierro, E.L., Solano-Correa, Y.T., Corrales-Muñoz, J.C., Figueroa-Casas, A.: A semi-supervised hybrid approach for multitemporal multi-region multisensor landsat data classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(12), 5424–5435 (2016)CrossRefGoogle Scholar
  3. 3.
    Chion, C., Landry, J.A., Da Costa, L.: A genetic-programming-based method for hyperspectral data information extraction: agricultural applications. IEEE Trans. Geosci. Remote Sens. 46, 2446–2457 (2008)CrossRefGoogle Scholar
  4. 4.
    Djerriri, K., Malki, M.: Application of genetic programming and Landsat multi-date imagery for urban growth monitoring. In: SPIE - Image Signal Processing Remote Sensing XIX, vol. 8892, p. 889210 (2013)Google Scholar
  5. 5.
    Yang, H., Du, Q., Su, H., Sheng, Y.: An efficient method for supervised hyperspectral band selection. IEEE Geosci. Remote Sens. Lett. 8, 138–142 (2011)CrossRefGoogle Scholar
  6. 6.
    Dos Santos, L.C.B., Guimaraes, S.J.F., Dos Santos, J.A.: Efficient unsupervised band selection through spectral rhythms. IEEE J. Sel. Top. Signal Process. 9, 1016–1025 (2015)CrossRefGoogle Scholar
  7. 7.
    Puente, C., et al.: A novel GP approach to synthesize vegetation indices for soil erosion assessment. In: Giacobini, M., et al. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 375–384. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-01129-0_42CrossRefGoogle Scholar
  8. 8.
    Carlson, T.N., Ripley, D.A.: On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 62, 241–252 (1997)CrossRefGoogle Scholar
  9. 9.
    Jiang, Z., Huete, A.R., Didan, K., Miura, T.: Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 112, 3833–3845 (2008)CrossRefGoogle Scholar
  10. 10.
    Taghizadeh-Mehrjardi, R., et al.: Prediction of soil surface salinity in arid region of central Iran using auxiliary variables and genetic programming. Arid L. Res. Manag. 30, 49–64 (2016)CrossRefGoogle Scholar
  11. 11.
    Momm, H.G., Kuszmaul, J.S., Easson, G.: Integration of logistic regression and genetic programming to model coastal Louisiana land loss using remote sensing. In: American Society for Photogrammetry and Remote Sensing - ASPRS Annual Conference 2007, Tampa, Florida, pp. 1–8 (2007)Google Scholar
  12. 12.
    Cobos, C., Munoz, L., Mendoza, M., Leon Guzman, E., Herrera-Viedma, E.: Fitness function obtained from a genetic programming approach for web document clustering using evolutionary algorithms. In: Pavón, J., Duque-Méndez, N.D., Fuentes-Fernández, R. (eds.) IBERAMIA 2012. LNCS, vol. 7637, pp. 179–188. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34654-5_19CrossRefGoogle Scholar
  13. 13.
    Cobos, C., et al.: Clustering of web search results based on the cuckoo search algorithm and balanced Bayesian information criterion. Inf. Sci. (NY) 281, 248–264 (2014)CrossRefGoogle Scholar
  14. 14.
    Cobos, C., Duque, A., Bolaños, J., Mendoza, M., León, E.: Algorithm for clustering of web search results from a hyper-heuristic approach. In: Pichardo-Lagunas, O., Miranda-Jiménez, S. (eds.) MICAI 2016. LNCS, vol. 10062, pp. 285–316. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-319-62428-0_24CrossRefGoogle Scholar
  15. 15.
    Li, S., Chen, X.: A new bare-soil index for rapid mapping developing areas using landsat 8 data. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, pp. 139–144. Copernicus GmbH (2014)Google Scholar
  16. 16.
    Kaggle Inc.: Planet: Understanding the Amazon from SpaceGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Information Technology Research Group (GTI)University of CaucaPopayánColombia

Personalised recommendations