Advertisement

Behavior of the CIE L*a*b* Color Space in the Detection of Saturation Variations During Color Image Segmentation

  • Rodolfo Alvarado-Cervantes
  • Edgardo M. Felipe-RiveronEmail author
  • Vladislav Khartchenko
  • Oleksiy Pogrebnyak
  • Rodolfo Alvarado-Martínez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10633)

Abstract

In this paper, a study of the behavior of the CIE L*a*b* color space to detect subtle changes of saturation during image segmentation is presented. It was performed a comparative study of some basic segmentation techniques implemented in the L*a*b*, RGB color space and in a modified HSI color space using a recently published adaptive color similarity function. In the CIE L*a*b* color space we have studied the behavior of: (1) the Euclidean metric of a* and b* color components rejecting L* and (2) a probabilistic approach on a* and b*. From the results it was obtained that the CIE L*a*b* color space is not adequate to distinguish subtle changes of color saturation under illumination variations. In some high saturated color regions the CIE L*a*b* is not useful to distinguish saturation variations at all. It can be observed that the CIE L*a*b* has better performance than the RGB color space in low saturated regions but it has worse performance in most high saturated color regions; all high saturation regions are very sensitive to changes in illumination and a minimum change causes failures during segmentation. The improvement in quality of the recently published color segmentation technique to distinguish subtle saturation variations is substantially significant.

Keywords

CIELAB L*a*b* color space Color metrics Color categorization Color image segmentation Color segmentation evaluation Synthetic color image generation 

Notes

Acknowledgements

The authors of this paper wish to thank to the Centro de Investigación en Computación (CIC), Instituto Politécnico Nacional (IPN); México; Secretaría de Investigación y Posgrado (SIP), México; Centro de Investigaciones Teóricas, Facultad de Estudios Superiores Cuautitlán (FES-C), Universidad Nacional Autónoma de México (UNAM), Proyectos PAPIIT IN113316; PAPIIT IN112913 and PIAPIVC06, UNAM; Departamento de Investigación en Electrónica de Control e Inteligencia Artificial, Industrias Electrónicas Ateramex, S.A. de C.V., for their economic support to this work.

References

  1. 1.
    Alvarado-Cervantes, R., Felipe-Riveron, E.M., Khartchenko, V., Pogrebnyak, O.: An adaptive color similarity function suitable for image segmentation and its numerical evaluation. Col. Res. Appl. 42, 156–172 (2017). E.C. Carter (ed.) Wiley Periodicals, Inc., Hoboken, published Online May 20, 2016 in Wiley Online Library (wileyonlinelibrary.com), https://doi.org/10.1002/col.22059CrossRefGoogle Scholar
  2. 2.
    Plataniotis, K.N., Venetsanopoulos, A.N.: Color Image Processing and Applications, 1st edn. Springer, Berlin Heidelberg (2000).  https://doi.org/10.1007/978-3-662-04186-4. 354 P.CrossRefGoogle Scholar
  3. 3.
    Alvarado-Cervantes, R.: Segmentación de patrones lineales topológicamente diferentes, mediante agrupamientos en el espacio de color HSI, M.Sc. thesis, Center for Computing Research, National Polytechnic Institute, Mexico (2006)Google Scholar
  4. 4.
    Cheng, H., Jiang, X., Sun, Y., Wang, J.: Color image segmentation: advances and prospects. Pattern Recogn. 34(12), 2259–2281 (2001)CrossRefGoogle Scholar
  5. 5.
    Alvarado-Cervantes, R., Felipe-Riveron, E.M., Sanchez-Fernandez, L.P.: Color image segmentation by means of a similarity function. In: Bloch, I., Cesar, R.M. (eds.) CIARP 2010. LNCS, vol. 6419, pp. 319–328. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-16687-7_44CrossRefGoogle Scholar
  6. 6.
    Angulo, J., Serra, J.: Modelling and segmentation of colour images in polar representations. Image Vis. Comput. 25, 475–495 (2007). Centre de Morphologie Mathématique – Ecole des Mines de Paris, FranceCrossRefGoogle Scholar
  7. 7.
  8. 8.
    Huang, R., Sang, N., Luo, D., Tang, Q.: Image segmentation via coherent clustering in L*a*b* color space. Pattern Recogn. Lett. 32, 891–902 (2011)CrossRefGoogle Scholar
  9. 9.
    Hanbury, A., Serra, J.: A 3D-polar coordinate colour representation suitable for image analysis, Technical report PRIP-TR-77, Pattern Recognition and Image Processing Group, Institute of Computer Aided Automation, Vienna University of Technology, Vienna Austria (2003)CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Zhang H., Fritts J., Goldman, S.: Image segmentation evaluation: a survey of unsupervised methods. Comput. Vis. Image Underst., 260–280 (2008)  https://doi.org/10.1016/j.cviu.2007.08.003CrossRefGoogle Scholar
  12. 12.
    Zhang, Y.J.: A survey on evaluation methods for image segmentation. Pattern Recognit. 29(8), 1335–1346 (1996)CrossRefGoogle Scholar
  13. 13.
    Zhang, Y.J.: A review of recent evaluation methods for image segmentation. In: Proceedings of the 6th International Symposium on Signal Processing and Its Applications, pp. 148–151 (2001)Google Scholar
  14. 14.
    Zhang, Y.J., Gerbrands, J.J.: On the design of test images for segmentation evaluation. In: Proceedings EUSIPCO, vol. 1, pp. 551–554 (1992)Google Scholar
  15. 15.
    Zhang, Y.J.: A summary of recent progresses for segmentation evaluation. In: Zhang, Y.J. (ed.) Advances in Image and Video Segmentation. IGI Global Research Collection, Idea Group Inc. (IGI), pp. 423–439 (2006). ISBN 1591407559, 9781591407553Google Scholar
  16. 16.
    Correa-Tome, F.E., Sanchez-Yanez, R.E., Ayala-Ramirez, V.: Comparison of perceptual color spaces for natural image segmentation tasks. Opt. Eng. 50(11), 117203 (2011)CrossRefGoogle Scholar
  17. 17.
    Gupta, S., Bhuchar, K., Sandhu, P.S.: Implementing color image segmentation using biogeography based optimization. In: International Conference on Software and Computer Applications, IPCSIT, vol. 9, pp 79–86. IACSIT Press, Singapore (2011)Google Scholar
  18. 18.
    Sengur, A., Guo, Y.: Color texture image segmentation based on neutrosophic set and wavelet transformation. Comput. Vis. Image Underst. 115(8), 1134–1144 (2011).  https://doi.org/10.1016/j.cviu.2011.04.001CrossRefGoogle Scholar
  19. 19.
    Protiere, A., Sapiro, G.: Interactive image segmentation via adaptive weighted distances. IEEE Trans. Image Process. 16(4), 1046–1057 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Bai, X., Sapiro, G.: A geodesic framework for fast interactive image and video segmentation and matting. In: IEEE 11th International Conference on Computer Vision, pp. 1–8 (2007)Google Scholar
  21. 21.
    Celik, T., Tjahjadi, T.: Unsupervised colour image segmentation using dual-tree complex wavelet transform. Comput. Vis. Image Underst. 114, 813–826 (2010)CrossRefGoogle Scholar
  22. 22.
    Matlab v 7.10.0.499: Image Processing Toolbox, Color-Based Segmentation Using K-Means Clustering (R2010a)Google Scholar
  23. 23.
    Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874 (2006)CrossRefGoogle Scholar
  24. 24.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn, p. 954. Prentice Hall, Upper Saddle River (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Rodolfo Alvarado-Cervantes
    • 1
    • 2
    • 3
  • Edgardo M. Felipe-Riveron
    • 1
    Email author
  • Vladislav Khartchenko
    • 2
  • Oleksiy Pogrebnyak
    • 1
  • Rodolfo Alvarado-Martínez
    • 3
  1. 1.Centro de Investigación En Computación, Instituto Politécnico NacionalMexico CityMexico
  2. 2.Centro de Investigaciones Teóricas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de MéxicoCuautitlán IzcalliMexico
  3. 3.Departamento de Investigación En Electrónica de Control E Inteligencia Artificial, Industrias Electrónicas Ateramex, S.a. de C.VCuautitlán IzcalliMexico

Personalised recommendations