A Survey of Machine Learning Approaches for Age Related Macular Degeneration Diagnosis and Prediction

  • Antonieta Martínez-VelascoEmail author
  • Lourdes Martínez-VillaseñorEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10632)


Age Related Macular Degeneration (AMD) is a complex disease caused by the interaction of multiple genes and environmental factors. AMD is the leading cause of visual dysfunction and blindness in developed countries, and a rising cause in underdeveloped countries. Currently, retinal images are studied in order to identify drusen in the retina. The classification of these images allows to support the medical diagnosis. Likewise, genetic variants and risk factors are studied in order to make predictive studies of the disease, which are carried out with the support of statistical tools and, recently, with Machine Learning (ML) methods. In this paper, we present a survey of studies performed in complex diseases under both approaches, especially for the case of AMD. We emphasize the approach based on the genetic variants of individuals, as it is a support tool for the prevention of AMD. According to the vision of personalized medicine, disease prevention is a priority to improve the quality of life of people and their families, as well as to avoid the inherent health burden.


AMD Machine Learning Automated diagnosis Classification Pattern recognition Predictive diagnosis 


  1. 1.
    Nitsch, D., Gonçalves, J.P., Ojeda, F., de Moor, B., Moreau, Y.: Candidate gene prioritization by network analysis of differential expression using machine learning approaches. BMC Bioinform. 11, 460 (2010)CrossRefGoogle Scholar
  2. 2.
    Wong, W.L., et al.: Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob. Health 2, e106–e116 (2014)CrossRefGoogle Scholar
  3. 3.
    Sivakumaran, T.A., et al.: A 32 kb critical region excluding Y402H in CFH mediates risk for age-related macular degeneration. PLoS ONE 6, e25598 (2011)CrossRefGoogle Scholar
  4. 4.
    Stone, E.M., et al.: Recommendations for genetic testing of inherited eye diseases: report of the American academy of ophthalmology task force on genetic testing. Ophthalmology 119, 2408–2410 (2012)CrossRefGoogle Scholar
  5. 5.
    Fraccaro, P., et al.: Combining macula clinical signs and patient characteristics for age-related macular degeneration diagnosis: a machine learning approach. BMC Ophthalmol. 15, 10 (2015)CrossRefGoogle Scholar
  6. 6.
    Caixinha, M., Nunes, S.: Machine learning techniques in clinical vision sciences. Curr. Eye Res. 42, 1–15 (2016)CrossRefGoogle Scholar
  7. 7.
    Dasgupta, A., Sun, Y.: Brief review of regression-based and machine learning methods in genetic epidemiology: the Genetic Analysis Workshop 17 experience. Genet. Epidemiol. 35, 1–13 (2011)CrossRefGoogle Scholar
  8. 8.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn., p. 654. Wiley (2001)Google Scholar
  9. 9.
    Hijazi, M.H.A., Coenen, F., Zheng, Y.: Data mining techniques for the screening of age-related macular degeneration. Knowledge-Based Syst. 29, 83–92 (2012)CrossRefGoogle Scholar
  10. 10.
    Priya, R., Aruna, P.: Automated diagnosis of age-related macular degeneration using machine learning techniques. Int. J. Comput. Appl. Technol. 49, 157 (2014)CrossRefGoogle Scholar
  11. 11.
    Tsai, C.-L., Yang, Y.-L., Chen, S.-J., Lin, K.-S., Chan, C.-H., Lin, W.-Y.: Automatic characterization of classic choroidal neovascularization by using adaboost for supervised learning. Investig. Opthalmol. Vis. Sci. 52, 2767 (2011)CrossRefGoogle Scholar
  12. 12.
    Acharya, U.R., et al.: Novel risk index for the identification of age-related macular degeneration using radon transform and DWT features. Comput. Biol. Med. 73, 131–140 (2016)CrossRefGoogle Scholar
  13. 13.
    Mookiah, M.R., et al.: Decision support system for age-related macular degeneration using discrete wavelet transform. Med. Biol. Eng. Comput. 52, 781–796 (2014)CrossRefGoogle Scholar
  14. 14.
    Liu, H., Xu, Y., Wong, D.W.K., Liu, J.: Growcut-based drusen segmentation for age-related macular degeneration detection. In: 2014 IEEE Visual Communications and Image Processing Conference, VCIP 2014, pp. 161–164 (2015)Google Scholar
  15. 15.
    Liu, H., Xu, Y., Wong, D.W.K., Liu, J.: Effective drusen localization for early AMD screening using sparse multiple instance learning. In: Effective Drusen Localization for Early AMD Screening Using Sparse Multiple Instance Learning, pp. 73–80 (2015)Google Scholar
  16. 16.
    Cheng, J., et al.: Early age-related macular degeneration detection by focal biologically inspired feature. In: Proceedings of International Conference on Image Processing, pp. 2805–2808. ICIP (2012)Google Scholar
  17. 17.
    Garg, S., Sivaswamy, J., Datt Joshi, G.: Automatic drusen detection from colour retinal images. In: Conference on Computational Intelligence and Multimedia Applications, pp. 377–381. IEEE (2007)Google Scholar
  18. 18.
    Acharya, U.R., et al.: Automated screening tool for dry and wet age-related macular degeneration (ARMD) using pyramid of histogram of oriented gradients (PHOG) and nonlinear features. J. Comput. Sci. 20, 41–51 (2017)Google Scholar
  19. 19.
    Cacheiro Martínez, P., Ordovás, J.M., Corella, D.: Métodos de selección de variables en estudios de asociación genética. Aplicación a un estudio de genes candidatos en Enfermedad de Parkinson, Coruña, España (2011)Google Scholar
  20. 20.
    Hindorff, L.A., et al.: Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. 106, 9362–9367 (2009)CrossRefGoogle Scholar
  21. 21.
    Iniesta, R.: Análisis estadístico de polimorfismos genéticos en estudios epidemiológicos. Gac. Sanit. 19, 333–341 (2005)CrossRefGoogle Scholar
  22. 22.
    Zhang, M., Baird, P.N.: A decade of age-related macular degeneration risk models: what have we learned from them and where are we going? Ophthalmic Genet. 38, 1–7 (2016)Google Scholar
  23. 23.
    Larrañaga, P., et al.: Machine learning in bioinformatics. Brief. Bioinform. 7, 86–112 (2006)CrossRefGoogle Scholar
  24. 24.
    Spencer, K.L., et al.: Using genetic variation and environmental risk factor data to identify individuals at high risk for age-related macular degeneration. PLoS ONE 6, e17784 (2011)CrossRefGoogle Scholar
  25. 25.
    Jiang, R., Tang, W., Wu, X., Fu, W.: A random forest approach to the detection of epistatic interactions in case-control studies. BMC Bioinform. 10(Suppl 1), S65 (2009)CrossRefGoogle Scholar
  26. 26.
    Gold, B., et al.: Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat. Genet. 38, 458–462 (2006)CrossRefGoogle Scholar
  27. 27.
    Chen, X., Liu, C.-T., Zhang, M., Zhang, H.: A forest-based approach to identifying gene and gene–gene interactions. Proc. Natl. Acad. Sci. U. S. A. 104, 19199–19203 (2007)CrossRefGoogle Scholar
  28. 28.
    Çelebiler, A., Şeker, H., Yüksel, B., Oruns, A., Karaca, M.B.: Discovery of the connection among age-related macular degeneration, MTHFR C677T and PAI 1 4G/5G gene polymorphisms, and body mass index by means of Bayesian inference methods. Turk. J. Electr. Eng. Comput. Sci. 21, 2062–2078 (2013)CrossRefGoogle Scholar
  29. 29.
    Krishnaiah, S., Surampudi, B., Keeffe, J.: Modeling the risk of age-related macular degeneration and its predictive comparisons in a population in South India. Int. J. Community Med. Public Health 2, 137 (2015)CrossRefGoogle Scholar
  30. 30.
    Swaroop, A., Branham, K.E.H., Chen, W., Abecasis, G.: Genetic susceptibility to age-related macular degeneration: a paradigm for dissecting complex disease traits. Hum. Mol. Genet. 16, 174–182 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Facultad de IngenieríaUniversidad PanamericanaCiudad de MéxicoMexico

Personalised recommendations