Human Activity Recognition on Mobile Devices Using Artificial Hydrocarbon Networks

  • Hiram PonceEmail author
  • Guillermo González
  • Luis Miralles-Pechuán
  • Ma Lourdes Martínez-Villaseñor
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10632)


Human activity recognition (HAR) aims to classify and identify activities based on data-driven from different devices, such as sensors or cameras. Particularly, mobile devices have been used for this recognition task. However, versatility of users, location of smartphones, battery, processing and storage limitations, among other issues have been identified. In that sense, this paper presents a human activity recognition system based on artificial hydrocarbon networks. This technique have been proved to be very effective on HAR systems using wearable sensors, so the present work proposes to use this learning method with the information provided by the in-sensors of mobile devices. Preliminary results proved that artificial hydrocarbon networks might be used as an alternative for human activity recognition on mobile devices. In addition, a real dataset created for this work has been published.


Artificial organic networks Human activity recognition Classification Machine learning Sensors Mobile 


  1. 1.
    Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset fro human activity recognition using smartphones. In: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (2013)Google Scholar
  2. 2.
    Bulling, A., Blanke, U., Schiele, B.: A tutorial on human activity recognition using body-worn inertial sensors. ACM Comput. Surv. (CSUR) 46(3), 1–33 (2014)CrossRefGoogle Scholar
  3. 3.
    Chen, C., Jafari, R., Kehtarnavaz, N.: A survey of depth and inertial sensor fusion for human action recognition. Multimed. Tools Appl. 76(3), 4405–4425 (2017)CrossRefGoogle Scholar
  4. 4.
    Dohnálek, P., Gajdoš, P., Moravec, P., Peterek, T., SnáŠel, V.: Application and comparison of modified classifiers for human activity recognition. Przegląd Elektrotechniczny 89(11), 55–58 (2013)Google Scholar
  5. 5.
    Incel, O., Kose, M., Ersoy, C.: A review and taxonomy of activity recognition on mobile phones. BioNanoScience 3(2), 145–171 (2013)CrossRefGoogle Scholar
  6. 6.
    Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings on the Fourth International Workshop on Knowledge Discovery from Sensor Data (2010)Google Scholar
  7. 7.
    Kwolek, B., Kepski, M.: Human fall detection on embedded platform using depth maps and wireless accelerometer. Comput. Methods Programs Biomed. 117(3), 489–501 (2014)CrossRefGoogle Scholar
  8. 8.
    Lara, O.D., Labrador, M.A.: A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutor. 15(3), 1192–1209 (2013)CrossRefGoogle Scholar
  9. 9.
    Li, W., Zhang, Z., Liu, Z.: Action recognition based on a bag of 3D points. In: Computer Vision and Pattern Recognition Workshops, pp. 9–14 (2010)Google Scholar
  10. 10.
    Lockhart, J.W., Weiss, G.M.: Limitations with activity recognition methodology and data sets. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, pp. 747–756 (2014)Google Scholar
  11. 11.
    Ofli, F., Chaudhry, R., Kurillo, G., Vidal, R., Bajcsy, R.: Berkeley MHAD: a comprehensive multimodal human action database. In: IE Workshop on Applications of Computer Vision, pp. 53–60 (2013)Google Scholar
  12. 12.
    Ponce, H., Martínez-Villasenor, M.L., Miralles-Pechuán, L.: A novel wearable sensor-based human activity recognition approach using artificial hydrocarbon networks. Sensors 16(7), 1033 (2016)CrossRefGoogle Scholar
  13. 13.
    Ponce, H., Miralles-Pechuán, L., Martínez-Villasenor, M.L.: A flexible approach for human activity recognition using artificial hydrocarbon networks. Sensors 16(11), 1715 (2016)CrossRefGoogle Scholar
  14. 14.
    Ponce, H., Ponce, P.: Artificial organic networks. In: 2011 IEEE Conference on Electronics, Robotics and Automotive Mechanics, pp. 29–34. IEEE (2011)Google Scholar
  15. 15.
    Ponce, H., Ponce, P., Molina, A.: Adaptive noise filtering based on artificial hydrocarbon networks: an application to audio signals. Expert Syst. Appl. 41(14), 6512–6523 (2014)CrossRefGoogle Scholar
  16. 16.
    Ponce-Espinosa, H., Ponce-Cruz, P., Molina, A.: Artificial organic networks. Artificial Organic Networks. SCI, vol. 521, pp. 53–72. Springer, Cham (2014). Scholar
  17. 17.
    Ponce, H., Ponce, P., Molina, A.: The development of an artificial organic networks toolkit for LabVIEW. J. Comput. Chem. 36(7), 478–492 (2015)CrossRefGoogle Scholar
  18. 18.
    Preece, S.J., Goulermas, J.Y., Kenney, L.P.J., Howard, D., Meijer, K., Crompton, R.: Activity identification using body-mounted sensors-a review of classification techniques. Physiol. Meas. 30(4), 1–33 (2009)CrossRefGoogle Scholar
  19. 19.
    Reiss, A.: Personalized mobile physical activity monitoring for everyday life. Ph.D. thesis, Technical University of Kaiserslautern (2014)Google Scholar
  20. 20.
    Roggen, D., et al.: OPPORTUNITY: towards opportunistic activity and context recognition systems. In: 3rd IEEE Workshop on Autononomic and Opportunistic Communications (2009)Google Scholar
  21. 21.
    Roggen, D., et al.: Collecting complex activity datasets in highly rich networked sensor environments. In: Seventh International Conference on Networked Sensing Systems (INSS), Kassel, Germany, pp. 233–240. IEEE (2010)Google Scholar
  22. 22.
    Shoaib, M., Bosch, S., Incel, O.D., Scholten, H., Havinga, P.J.M.: A survey of online activity recognition using mobile phones. Sensors 15(1), 2059–2085 (2015)CrossRefGoogle Scholar
  23. 23.
    Su, X., Tong, H., Ji, P.: Activity recognition with smartphone sensors. Tsinghua Sci. Technol. 19(3), 235–249 (2014)CrossRefGoogle Scholar
  24. 24.
    Yang, A.Y., Jafari, R., Sastry, S.S., Bajcsy, R.: Distributed recognition of human actions using wearable motion sensor networks. J. Ambient. Intell. Smart Environ. 1(2), 103–115 (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Hiram Ponce
    • 1
    Email author
  • Guillermo González
    • 1
  • Luis Miralles-Pechuán
    • 2
  • Ma Lourdes Martínez-Villaseñor
    • 1
  1. 1.Facultad de IngenieríaUniversidad PanamericanaMexico CityMexico
  2. 2.Centre for Applied Data Analytics Research (CeADAR)University College DublinDublin 4Ireland

Personalised recommendations