Global Maximum Power Point Tracking Based on Intelligent Approach for Photovoltaic System Under Partial Shading Conditions
Abstract
This paper presents the design of a controller for Maximum Power Point Tracking (MPPT) of a photovoltaic system. The proposed controller relies upon a Recurrent Neuro-Fuzzy (RNF) which is designed as a combination of the concepts of Sugeno fuzzy model and neural network. The controller employs the RNF of four-layer with sixty-four fuzzy rules. Moreover, for the proposed RNF an improved self-tuning method is developed based on the photovoltaic system and its high performance requirements. The principal task of the tuning method is to adjust the parameters of the Fuzzy Logic (FL) in order to minimize the square of the error between actual and reference output. Simulations with practical parameters show that our proposed MPPT using RNF outperform the conventional MPPT controller terms of tracking speed and accuracy.
Keywords
Maximum power point tracking Photovoltaic system Recurrent Neuro-FuzzyReferences
- 1.Luque, A., Hegedus, S.: Handbook of Photovoltaic Science and Engineering, 2nd edn. Wiley, Hoboken (2010)CrossRefGoogle Scholar
- 2.Sick, F., Erge, T.: Photovoltaic in Building. International Energy Agency, Paris (1996)Google Scholar
- 3.Enrique, J.M., Andujar, J.M., Bohorquez, M.A.: A reliable, fast and low cost maximum power point tracker for photovoltaic applications. Sol. Energy 84, 79–89 (2010). https://doi.org/10.1016/j.solener.2009.10.011CrossRefGoogle Scholar
- 4.Hohm, D.P., Ropp, M.E.: Comparative study of maximum power point tracking algorithms. Prog. Photovolt. Res. Appl. 11(1), 47–62 (2003). https://doi.org/10.1002/pip.459CrossRefGoogle Scholar
- 5.Esram, T., Chapman, P.L.: Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans. Energy Convers. 22(2), 439–449 (2007)CrossRefGoogle Scholar
- 6.Dileep, G., Singh, S.: Maximum power point tracking of solar photovoltaic system using modified perturbation and observation method. Renew. Sustain. Energy Rev. 50, 109–129 (2015). https://doi.org/10.1016/j.rser.2015.04.072CrossRefGoogle Scholar
- 7.Messalti, S., Harrag, A., Loukriz, A.: A new neural networks MPPT controller for PV systems. In: Proceedings of the Renewable Energy Congress (IREC) (2015). https://doi.org/10.1109/irec.2015.7110907
- 8.Chekired, F., Mellit, A., Kalogirou, S., Larbes, C.: Intelligent maximum power point trackers for photovoltaic applications using {FPGA} chip: a comparative study. Sol. Energy 101, 83–99 (2014). https://doi.org/10.1016/j.solener.2013.12.026CrossRefGoogle Scholar
- 9.Lyden, S., Haque, M.: Maximum power point tracking techniques for photovoltaic systems: a comprehensive review and comparative analysis. Renew. Sustain. Energy Rev. 52, 1504–1518 (2015). https://doi.org/10.1016/j.rser.2015.07.172CrossRefGoogle Scholar
- 10.Bendib, B., Belmili, H., Krim, F.: A survey of the most used {MPPT} methods: conventional and advanced algorithms applied for photovoltaic systems. Renew. Sustain. Energy Rev. 45, 637–648 (2015). https://doi.org/10.1016/j.rser.2015.02.009CrossRefGoogle Scholar
- 11.Radjai, T., Gaubert, J.P., Rahmani, L., Mekhilef, S.: Experimental verification of po MPPT algorithm with direct control based on fuzzy logic control using CUK converter. Int. Trans. Electr. Energy Syst. 25(12), 3492–3508 (2015). https://doi.org/10.1002/etep.2047CrossRefGoogle Scholar
- 12.Radjai, T., Rahmani, L., Mekhilef, S., Gaubert, J.P.: Implementation of a modified incremental conductance {MPPT} algorithm with direct control based on a fuzzy duty cycle change estimator using dspace. Sol. Energy 110, 325–337 (2014). https://doi.org/10.1016/j.solener.2014.09.014CrossRefGoogle Scholar
- 13.Dounis, A.I., Kofinas, P., Alafodimos, C., Tseles, D.: Adaptive fuzzy gain scheduling PID controller for maximum power point tracking of photovoltaic system. Renew. Energy 60, 202–214 (2013). https://doi.org/10.1016/j.renene.2013.04.014TechnicalnoteCrossRefGoogle Scholar
- 14.Chekired, F., Larbes, C., Rekioua, D., Haddad, F.: Implementation of a {MPPT} fuzzy controller for photovoltaic systems on FPGA circuit. Energy Proc. 6, 541–549 (2011). https://doi.org/10.1016/j.egypro.2011.05.062CrossRefGoogle Scholar
- 15.Messai, A., Mellit, A., Pavan, A.M., Guessoum, A., Mekki, H.: FPGA-based implementation of a fuzzy controller (MPPT) for photovoltaic module. Energy Convers. Manag. 52(7), 2695–2704 (2011). https://doi.org/10.1016/j.enconman.2011.01.021CrossRefGoogle Scholar
- 16.Larbes, C., Cheikh, S.A., Obeidi, T., Zerguerras, A.: Genetic algorithms optimized fuzzy logic control for the maximum power point tracking in photovoltaic system. Renew. Energy 34(10), 2093–2100 (2009). https://doi.org/10.1016/j.renene.2009.01.006CrossRefGoogle Scholar
- 17.Cheng, P.-C., Peng, B.-R., Liu, Y.-H., Cheng, Y.-S., Huang, J.-W.: Optimization of a fuzzy logic-control-based MPPT algorithm using the particle swarm optimization technique. Energies 8(6), 5338–5360 (2015). https://doi.org/10.3390/en8065338CrossRefGoogle Scholar
- 18.Lin, W.-M., Hong, C.-M., Chen, C.-H.: Neural-network-based MPPT control of a standalone hybrid power generation system. IEEE Trans. Power Electron. 26(12), 3571–3581 (2011). https://doi.org/10.1109/TPEL.2011.2161775CrossRefGoogle Scholar
- 19.Liu, Y.-H., Liu, C.-L., Huang, J.-W., Chen, J.-H.: Neural-network-based maximum power point tracking methods for photovoltaic systems operating under fast changing environments. Sol. Energy 89, 42–53 (2013). https://doi.org/10.1016/j.solener.2012.11.017CrossRefGoogle Scholar
- 20.Hatti, M., Meharrar, A., Tioursi, M.: Power management strategy in the alternative energy photovoltaic/PEM fuel cell hybrid system. Renew. Sustain. Energy Rev. 15(9), 5104–5110 (2011). https://doi.org/10.1016/j.rser.2011.07.046CrossRefGoogle Scholar
- 21.Boumaaraf, H., Talha, A., Bouhali, O.: A three-phase {NPC} grid-connected inverter for photovoltaic applications using neural network {MPPT}. Renew. Sustain. Energy Rev. 49, 1171–1179 (2015). https://doi.org/10.1016/j.rser.2015.04.066CrossRefGoogle Scholar
- 22.Kulaksız, A.A., Akkaya, R.: A genetic algorithm optimized ANN-based {MPPT} algorithm for a stand-alone {PV} system with induction motor drive. Sol. Energy 86(9), 2366–2375 (2012). https://doi.org/10.1016/j.solener.2012.05.006CrossRefGoogle Scholar
- 23.Ramaprabha, R., Gothandaraman, V., Kanimozhi, K., Divya, R., Mathur, B.: Maximum power point tracking using GA-optimized artificial neural network for solar PV system. In: Proceedings of the Electrical Energy Systems (ICEES), pp. 264–268 (2011). https://doi.org/10.1109/icees.2011.5725340
- 24.Chaouachi, A., Kamel, R.M., Nagasaka, K.: A novel multi-model neuro-fuzzy-based {MPPT} for three-phase grid-connected photovoltaic system. Sol. Energy 84(12), 2219–2229 (2010). https://doi.org/10.1016/j.solener.2010.08.004CrossRefGoogle Scholar
- 25.Villalva, M.G., Gazoli, G.R., Filho, E.R.: Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Trans. Power Electron. 24(5), 1198–1208 (2009). https://doi.org/10.1109/TPEL.2009.2013862CrossRefGoogle Scholar
- 26.Zhang, Y., Sen, P., Hearn, G.E.: On-line trained adaptive neural controller. IEEE Control Syst. 15(5), 67–75 (1995). https://doi.org/10.1109/37.466260CrossRefGoogle Scholar
- 27.Tey, K.S., Mekhilef, S.: Modified incremental conductance algorithm for photovoltaic system under partial shading conditions and load variation. IEEE Trans. Ind. Electron. 61(10), 5384–5391 (2014). https://doi.org/10.1109/TIE.2014.2304921CrossRefGoogle Scholar
- 28.Koutroulis, E., Blaabjerg, F.: A new technique for tracking the global maximum power point of PV arrays operating under partial shading conditions. IEEE J. Photovolt. 2(2), 184–190 (2012). https://doi.org/10.1109/JPHOTOV.2012.2183578CrossRefGoogle Scholar