Advertisement

New Advances in the Development of a Thermodynamic Equilibrium-Inspired Metaheuristic

  • Broderick Crawford
  • Ricardo Soto
  • Enrique Cortés
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10632)

Abstract

In this paper, the new results obtained with the development of a novel thermodynamic equilibrium-inspired optimization algorithm are presented. This technique was developed in order to solve nonlinear optimization problems, with continuous domains. In our proposal, each variable is considered as the most volatile chemical component of a saturated binary liquid mixture, at a determined pressure and temperature. In the search process, the new value of each decision variable is obtained at some temperature of bubble or dew of the binary system. The search includes the random change of the chemical species and their compositions. The algorithm has being tested by using well-known mathematical functions as benchmark functions and has given competitive results in comparison with other metaheuristics.

Keywords

Metaheuristics Stochastic search methods Single-solution based metaheuristic Combinatorial optimization 

Notes

Acknowledgements

The authors would like to thank the grants given as follows: PhD. Broderick Crawford is supported by grant CONICYT/FONDECYT/REGULAR/1171243. PhD. Ricardo Soto is supported by grant CONICYT/FONDECYT/REGULAR/1160455. MSc. Enrique Cortés is supported by grant INF-PUCV 2015.

References

  1. 1.
    Astudillo, L., Melin, P., Castillo, O.: Introduction to an optimization algorithm based on the chemical reactions. Inf. Sci. 291(C), 85–95 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Poling, B.E., Prausnitz, J.M., O’Connell, J.P.: The Properties of Gases and Liquids. McGraw-Hill, New York (2001)Google Scholar
  3. 3.
    Blum, C., Aguilera, M.J.B., Roli, A., Sampels, M. (eds.): Hybrid Metaheuristics: An Emerging Approach to Optimization. Studies in Computational Intelligence, vol. 114. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78295-7CrossRefzbMATHGoogle Scholar
  4. 4.
    Crawford, B., Soto, R., Astorga, G., Garcia, J., Castro, C., Paredes, F.: Putting continuous metaheuristics to work in binary search spaces. Complexity 2017, 8404231:1–8404231:19 (2017).  https://doi.org/10.1155/2017/8404231MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    de la O, D., Castillo, O., Astudillo, L., Soria, J.: Fuzzy chemical reaction algorithm. In: Sidorov, G., Galicia-Haro, S.N. (eds.) MICAI 2015. LNCS (LNAI), vol. 9413, pp. 452–459. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-27060-9_37CrossRefGoogle Scholar
  6. 6.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant system optimization by a colony of cooperating agents. IEEE Trans. Syst., Man, Cybern., Part B 26(1), 29–41 (1996)CrossRefGoogle Scholar
  7. 7.
    Fox, B., Xiang, W., Lee, H.P.: Industrial applications of the ant colony optimization algorithm. Int. J. Adv. Manuf. Technol. 31(7), 805–814 (2007)Google Scholar
  8. 8.
    Glover, F., Laguna, M.: General purpose heuristics for integer programming-part II. J. Heuristics 3(2), 161–179 (1997)CrossRefGoogle Scholar
  9. 9.
    Guo, Y., Li, W., Mileham, A., Owen, G.: Applications of particle swarm optimisation in integrated process planning and scheduling. Robot. Comput.-Integr. Manuf. 25(2), 280–288 (2009)CrossRefGoogle Scholar
  10. 10.
    Hatamlou, A.: Black hole: a new heuristic optimization approach for data clustering. Inf. Sci. 222, 175–184 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Smith, J.M., Van Ness, H., Abbott, M.: Introduction to Chemical Engineering Thermodynamics. The McGraw-Hill Companies Inc., New York (2005)Google Scholar
  12. 12.
    Karaboga, D.: Artificial bee colony algorithm. Scholarpedia 5(3), 6915 (2010)CrossRefGoogle Scholar
  13. 13.
    Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lanza-Gutierrez, J.M., Crawford, B., Soto, R., Berrios, N., Gomez-Pulido, J.A., Paredes, F.: Analyzing the effects of binarization techniques when solving the set covering problem through swarm optimization. Expert. Syst. Appl. 70, 67–82 (2017)CrossRefGoogle Scholar
  15. 15.
    Mladenovic, N., Hansen, P.: Variable neighborhood search. Comput. OR 24(11), 1097–1100 (1997)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Rana, S., Jasola, S., Kumar, R.: A review on particle swarm optimization algorithms and their applications to data clustering. Artif. Intell. Rev. 35(3), 211–222 (2011)CrossRefGoogle Scholar
  17. 17.
    Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)CrossRefGoogle Scholar
  18. 18.
    Chapra, S., Canale, R.: Numerical Methods for Engineers. McGraw-Hill Education, New York (2015)Google Scholar
  19. 19.
    Whitley, D.: An executable model of a simple genetic algorithm. In: Proceedings of the Second Workshop on Foundations of Genetic Algorithms, Vail, Colorado, USA, 26–29 July 1992, pp. 45–62 (1992)Google Scholar
  20. 20.
    Yaghini, M., Akhavan, R.: DIMMA: a design and implementation methodology for metaheuristic algorithms - a perspective from software development. Int. J. Appl. Metaheuristic Comput. 1(4), 57–74 (2010)CrossRefGoogle Scholar
  21. 21.
    Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3, 82–102 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Broderick Crawford
    • 1
  • Ricardo Soto
    • 1
  • Enrique Cortés
    • 1
    • 2
  1. 1.Pontificia Universidad Católica de ValparaísoValparaísoChile
  2. 2.Universidad de Playa AnchaValparaísoChile

Personalised recommendations