Advertisement

Individual Ergodic Theorems for Perturbed Alternating Regenerative Processes

  • Dmitrii Silvestrov
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 271)

Abstract

The paper presents results of complete analysis and classification of individual ergodic theorems for perturbed alternating regenerative processes with semi-Markov modulation. New short, long and super-long time ergodic theorems for regularly and singular type perturbed alternating regenerative processes are presented.

Keywords

Alternating regenerative process Semi-Markov modulation Regular perturbation Singular perturbation Ergodic theorem 

References

  1. 1.
    Alimov, D., Shurenkov, V.M.: Markov renewal theorems in a scheme of series. Ukr. Mat. Zh. 21(11), 1443–1448 (1990) (English translation in Ukr. Math. J. 42(11), 1283–1288)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Anisimov, V.V.: Random processes with discrete components. Vysshaya Shkola and Izdatel’stvo Kievskogo Universiteta, Kiev, 183 pp. (1988)Google Scholar
  3. 3.
    Anisimov, V.V.: Switching Processes in Queueing Models. Applied Stochastic Methods Series, 345 pp. ISTE, London; Wiley, Hoboken (2008)Google Scholar
  4. 4.
    Asmussen, S.: Applied Probability and Queues, 2nd edn. Applications of Mathematics, Stochastic Modelling and Applied Probability, vol. 51, xii+438 pp. Springer, New York (2003)Google Scholar
  5. 5.
    Avrachenkov, K.E., Filar, J.A., Howlett, P.G.: Analytic Perturbation Theory and Its Applications, xii+372 pp. SIAM, Philadelphia (2013)Google Scholar
  6. 6.
    Bini, D.A., Latouche, G., Meini, B.: Numerical Methods for Structured Markov Chains. Numerical Mathematics and Scientific Computation, xii+327 pp. Oxford Science Publications, Oxford University Press, New York (2005)Google Scholar
  7. 7.
    Cohen, J.W.: On Regenerative Processes in Queueing Theory. Lecture Notes in Economics and Mathematical Systems, vol. 121, ix+93 pp. Springer, Berlin (1976)Google Scholar
  8. 8.
    Courtois, P.J.: Decomposability. Queueing and Computer System Applications. ACM Monograph Series, xiii+201 pp. Academic Press, New York (1977)Google Scholar
  9. 9.
    Cox, D.R.: Renewal Theory, ix+142 pp. Methuen, London; Wiley, New York (1962)Google Scholar
  10. 10.
    Englund, E.: Nonlinearly perturbed renewal equations with applications. Doctoral dissertation, Umeå University (2001)Google Scholar
  11. 11.
    Englund, E., Silvestrov, D.S.: Mixed large deviation and ergodic theorems for regenerative processes with discrete time. In: Jagers, P., Kulldorff, G., Portenko, N., Silvestrov, D. (eds.) Proceedings of the Second Scandinavian–Ukrainian Conference in Mathematical Statistics, vol. I, Umeå (1997). Theory Stoch. Process. 3(19)(1–2), 164–176 (1997)Google Scholar
  12. 12.
    Feller, W.: An Introduction to Probability Theory and Its Applications, Vol. II, 2nd edn. xxiv+669 pp. Wiley, New York (1971)Google Scholar
  13. 13.
    Gyllenberg, M., Silvestrov, D.S.: Nonlinearly perturbed regenerative processes and pseudo-stationary phenomena for stochastic systems. Stoch. Process. Appl. 86, 1–27 (2000)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gyllenberg, M., Silvestrov, D.S.: Quasi-Stationary Phenomena in Nonlinearly Perturbed Stochastic Systems. De Gruyter Expositions in Mathematics, vol. 44, ix+579 pp. Walter de Gruyter, Berlin (2008)Google Scholar
  15. 15.
    Iglehart, D.L., Shedler, G.S.: Regenerative Simulation of Response Times in Networks of Queues. Lecture Notes in Control and Information Sciences, vol. 26, xii+204 pp. Springer, Berlin (1980)Google Scholar
  16. 16.
    Kartashov, N.V.: Strong Stable Markov Chains, 138 pp. VSP, Utrecht and TBiMC, Kiev (1996)Google Scholar
  17. 17.
    Kingman, J.F.C.: Regenerative Phenomena. Wiley Series in Probability and Mathematical Statistics, xii+190 pp. Wiley, London (1972)Google Scholar
  18. 18.
    Koroliuk, V.S., Limnios, N.: Stochastic Systems in Merging Phase Space, xv+331 pp. World Scientific, Singapore (2005)Google Scholar
  19. 19.
    Korolyuk, V., Swishchuk, A.: Semi-Markov Random Evolutions. Mathematics and Its Applications, vol. 308, x+310 pp. Kluwer, Dordrecht (1995) (English revised edition of: Semi-Markov Random Evolutions, 254 pp. Naukova Dumka, Kiev (1992))CrossRefGoogle Scholar
  20. 20.
    Korolyuk, V.S., Turbin, A.F.: Semi-Markov Processes and Its Applications, 184 pp. Naukova Dumka, Kiev (1976)Google Scholar
  21. 21.
    Korolyuk, V.S., Turbin, A.F.: Mathematical Foundations of the State Lumping of Large Systems. Mathematics and Its Applications, vol. 264, x+278 pp. Kluwer, Dordrecht (1993) (English edition of Mathematical Foundations of the State Lumping of Large Systems, 218 pp. Naukova Dumka, Kiev (1978))CrossRefGoogle Scholar
  22. 22.
    Korolyuk, V.S., Korolyuk, V.V.: Stochastic Models of Systems. Mathematics and Its Applications, vol. 469, xii+185 pp. Kluwer, Dordrecht (1999)CrossRefGoogle Scholar
  23. 23.
    Kovalenko, I.N., Kuznetsov, N.Yu., Shurenkov, V.M.: Models of Random Processes. A Handbook for Mathematicians and Engineers, 446 pp. CRC Press, Boca Raton (1996) (A revised edition of Stochastic Processes. A Handbook, 366 pp. Naukova Dumka, Kiev (1983))Google Scholar
  24. 24.
    Lindvall, T.: Lectures on the Coupling Method. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, xiv+257 pp. Wiley, New York (2002) (A revised reprint of the 1992 original)Google Scholar
  25. 25.
    Ni, Y.: Nonlinearly perturbed renewal equations: asymptotic results and applications. Doctoral dissertation, vol. 106, Mälardalen University, Västerås (2011)Google Scholar
  26. 26.
    Ni, Y., Silvestrov, D., Malyarenko, A.: Exponential asymptotics for nonlinearly perturbed renewal equation with non-polynomial perturbations. J. Numer. Appl. Math. 1(96), 173–197 (2008)zbMATHGoogle Scholar
  27. 27.
    Petersson, M.: Perturbed discrete time stochastic models. Doctoral dissertation, Stockholm University (2016)Google Scholar
  28. 28.
    Rolski, T., Schmidli, H., Schmidt, V., Teugels, J.: Stochastic Processes for Insurance and Finance. Wiley Series in Probability and Statistics, xviii+654 pp. Wiley, New York (1999)Google Scholar
  29. 29.
    Ross, S.M.: Introduction to Probability Models, 11th edn. xvi+767 pp. Elsevier/Academic Press, Amsterdam (2014)Google Scholar
  30. 30.
    Serfozo, R.: Basics of Applied Stochastic Processes. Probability and Its Applications, xiv+443 pp. Springer, Berlin (2009)Google Scholar
  31. 31.
    Shedler, G.S.: Regeneration and Networks of Queues. Applied Probability. A Series of the Applied Probability Trust, viii+224 pp. Springer, New York (1987)CrossRefGoogle Scholar
  32. 32.
    Shedler, G.S.: Regenerative Stochastic Simulation. Statistical Modeling and Decision Science, x+400 pp. Academic Press, Boston (1993)Google Scholar
  33. 33.
    Shurenkov, V.M.: Transition phenomena of the renewal theory in asymptotical problems of theory of random processes 1. Mat. Sbornik 112, 115–132 (1980) (English translation in Math. USSR: Sbornik 40(1), 107–123)Google Scholar
  34. 34.
    Shurenkov, V.M.: Transition phenomena of the renewal theory in asymptotical problems of theory of random processes 2. Mat. Sbornik 112, 226–241 (1980) (English translation in Math. USSR: Sbornik 40(2), 211–225)Google Scholar
  35. 35.
    Shurenkov, V.M.: Ergodic Theorems and Related Problems, viii+96 pp. VSP, Utrecht (1998) (English edition of: Ergodic Theorems and Related Problems of Theory of Random Processes, 119 pp. Naukova Dumka, Kiev (1981))Google Scholar
  36. 36.
    Shurenkov, V.M.: Ergodic Markov Processes. Probability Theory and Mathematical Statistics, 332 pp. Nauka, Moscow (1989)Google Scholar
  37. 37.
    Silvestrov, D.: Coupling for Markov renewal processes and the rate of convergence in ergodic theorems for processes with semi-Markov switchings. Acta Appl. Math. 34, 109–124 (1994)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Silvestrov, D.: Improved asymptotics for ruin probabilities. In: Silvestrov, D., Martin-Löf, A. (eds.) Modern Problems in Insurance Mathematics, Chapter 5, 37–68. EAA Series, Springer, Cham (2014)Google Scholar
  39. 39.
    Silvestrov, D., Silvestrov, S.: Asymptotic expansions for stationary distributions of perturbed semi-Markov processes. In: Silvestrov, S., Ranc̆ić, M. (eds.) Engineering Mathematics II. Algebraic, Stochastic and Analysis Structures for Networks, Data Classification and Optimization, Chapter 10. Springer Proceedings in Mathematics & Statistics, vol. 179, pp. 151–222. Springer, Cham (2016)Google Scholar
  40. 40.
    Silvestrov, D., Silvestrov, S.: Asymptotic expansions for stationary distributions of nonlinearly perturbed semi-Markov processes 1, 2. Methodol. Comp. Appl. Probab. 20 pp. (2017). Part 1:  https://doi.org/10.1007/s11009-017-9605-0, Part 2:  https://doi.org/10.1007/s11009-017-9607-y
  41. 41.
    Silvestrov, D., Silvestrov, S.: Nonlinearly Perturbed Semi-Markov Processes. Springer Briefs in Probability and Mathematical Statistics, xiv+143 pp. Springer, Cham (2017)CrossRefGoogle Scholar
  42. 42.
    Silvestrov, D., Petersson, M., Hössjer, O.: Nonlinearly perturbed birth-death-type models. In: Silvestrov, S., Ranc̆ić, M., Malyarenko, A. (eds.) Stochastic Processes and Applications, Chapter 3. Springer proceedings in mathematics & statistics, vol. 271, Springer, Cham (2018)Google Scholar
  43. 43.
    Silvestrov, D.S.: A generalization of the renewal theorem. Dokl. Akad. Nauk Ukr. SSR, Ser. A (11), 978–982 (1976)Google Scholar
  44. 44.
    Silvestrov, D.S.: The renewal theorem in a series scheme 1. Teor. Veroyatn. Mat. Stat. 18, 144–161 (1978) (English translation in Theory Probab. Math. Stat. 18, 155–172)Google Scholar
  45. 45.
    Silvestrov, D.S.: The renewal theorem in a series scheme 2. Teor. Veroyatn. Mat. Stat. 20, 97–116 (1979) (English translation in Theory Probab. Math. Stat. 20, 113–130)Google Scholar
  46. 46.
    Silvestrov, D.S.: Semi-Markov Processes with a Discrete State Space. Library for an Engineer in Reliability, 272 pp. Sovetskoe Radio, Moscow (1980)Google Scholar
  47. 47.
    Silvestrov, D.S.: Synchronized regenerative processes and explicit estimates for the rate of convergence in ergodic theorems. Dokl. Acad. Nauk Ukr. SSR, Ser. A (11), 22–25 (1980)Google Scholar
  48. 48.
    Silvestrov, D.S.: Method of a single probability space in ergodic theorems for regenerative processes 1. Math. Oper. Stat. Ser. Optim. 14, 285–299 (1983)Google Scholar
  49. 49.
    Silvestrov, D.S.: Method of a single probability space in ergodic theorems for regenerative processes 2. Math. Oper. Stat Ser. Optim. 15, 601–612 (1984)Google Scholar
  50. 50.
    Silvestrov, D.S.: Method of a single probability space in ergodic theorems for regenerative processes 3. Math. Oper. Stat. Ser. Optim. 15, 613–622 (1984)Google Scholar
  51. 51.
    Silvestrov, D.S.: Exponential asymptotic for perturbed renewal equations. Teor. Ǐmovirn. Mat. Stat. 52, 143–153 (1995) (English translation in Theory Probab. Math. Stat. 52, 153–162)Google Scholar
  52. 52.
    Silvestrov D.S.: Limit Theorems for Randomly Stopped Stochastic Processes. Probability and Its Applications, xiv+398 pp. Springer, London (2004)CrossRefGoogle Scholar
  53. 53.
    Silvestrov D.S.: Nonlinearly perturbed stochastic processes and systems. In: Rykov, V., Balakrishnan, N., Nikulin, M. (eds.) Mathematical and Statistical Models and Methods in Reliability, Chapter 2, 19–38. Birkhäuser, New York (2010)CrossRefGoogle Scholar
  54. 54.
    Silvestrov, D.S., Petersson, M.: Exponential expansions for perturbed discrete time renewal equations. In: Karagrigoriou, A., Lisnianski, A., Kleyner, A., Frenkel, I. (eds.) Applied Reliability Engineering and Risk Analysis, Chapter 23, 349–362. Probabilistic Models and Statistical Inference, Wiley, New York (2014)CrossRefGoogle Scholar
  55. 55.
    Smith, W.L.: Regenerative stochastic processes. Proc. R. Soc. Ser. A Math. Phys. Eng. Sci. 232, 6–31 (1955)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Stewart, G.W.: Matrix Algorithms. Vol. I. Basic Decompositions, xx+458 pp. SIAM, Philadelphia (1998)Google Scholar
  57. 57.
    Stewart, G.W.: Matrix Algorithms. Vol. II. Eigensystems, xx+469 pp. SIAM, Philadelphia (2001)Google Scholar
  58. 58.
    Stewart, G.W., Sun, J.G.: Matrix Perturbation Theory. Computer Science and Scientific Computing, xvi+365 pp. Academic Press, Boston (1990)Google Scholar
  59. 59.
    Thorisson, H.: Coupling, Stationarity and Regeneration. Probability and Its Applications, xiv+517 pp. Springer, New York (2000)Google Scholar
  60. 60.
    Yeleiko, Ya.I., Shurenkov, V.M.: Transient phenomena in a class of matrix-valued stochastic evolutions. Theor. Ǐmovirn. Mat. Stat. 52, 72–76 (1995) (English translation in Theory Probab. Math. Stat. 52, 75–79)Google Scholar
  61. 61.
    Yin, G.G., Zhang, Q.: Discrete-Time Markov Chains. Two-Time-Scale Methods and Applications. Stochastic Modelling and Applied Probability, vol. 55, xix+348 pp. Springer, New York (2005)Google Scholar
  62. 62.
    Yin, G.G., Zhang, Q.: Continuous-Time Markov Chains and Applications. A Two-Time-Scale Approach, 2nd edn. Stochastic Modelling and Applied Probability, vol. 37, xxii+427 pp. Springer, New York (2013) (An extended variant of the first 1998 edition)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of MathematicsStockholm UniversityStockholmSweden

Personalised recommendations