Advertisement

PageRank in Evolving Tree Graphs

  • Benard Abola
  • Pitos Seleka Biganda
  • Christopher Engström
  • John Magero Mango
  • Godwin Kakuba
  • Sergei Silvestrov
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 271)

Abstract

In this article, we study how PageRank can be updated in an evolving tree graph. We are interested in finding how ranks of the graph can be updated simultaneously and effectively using previous ranks without resorting to iterative methods such as the Jacobi or Power method. We demonstrate and discuss how PageRank can be updated when a leaf is added to a tree, at least one leaf is added to a vertex with at least one outgoing edge, an edge added to vertices at the same level and forward edge is added in a tree graph. The results of this paper provide new insights and applications of standard partitioning of vertices of the graph into levels using breadth-first search algorithm. Then, one determines PageRanks as the expected numbers of random walk starting from any vertex in the graph. We noted that time complexity of the proposed method is linear, which is quite good. Also, it is important to point out that the types of vertex play essential role in updating of PageRank.

Keywords

Breadth-first search Forward edge PageRank Random walk Tree 

Notes

Acknowledgements

This research was supported by the Swedish International Development Cooperation Agency (Sida), International Science Programme (ISP) in Mathematical Sciences (IPMS), Sida Bilateral Research Program (Makerere University and University of Dar-es-Salaam). We are also grateful to the research environment Mathematics and Applied Mathematics (MAM), Division of Applied Mathematics, Mälardålen University for providing an excellent and inspiring environment for research education and research. The authors are grateful to Dmitrii Silvestrov for useful comments and discussions.

References

  1. 1.
    Anderson, F., Silvestrov, S.: The mathematics of internet search engines. Acta Appl. Math. 104, 211–242 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arasu, A., Novak, J., Tomkins, A., Tomlin, J.: PageRank computation and the structure of the web: experiments and algorithms. In: Proceedings of the Eleventh International World Wide Web Conference, Poster Track, pp. 107–117 (2002)Google Scholar
  3. 3.
    Battiston, S., Puliga, M., Kaushik, R., Tasca, P., Calderelli, G.: DeptRank: too central to fail? Financial networks, the fed and systemic risk. Technical report (2012)Google Scholar
  4. 4.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Comput Netw ISDN Syst. 30(1–7), 107–117 (1998) (Proceedings of the Seventh International World Wide Web Conference)CrossRefGoogle Scholar
  5. 5.
    Deng, C.Y.: A generalization of the Sherman-Morrison-Woodbury formula. Appl. Math. Lett. 24(9), 1561–1564 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Engström, C., Silvestrov, S.: A componentwise PageRank algorithm. In: Bozeman, J.R., Oliveira, T., Skiadas, C.H. (eds.) Stochastic and Data Analysis Methods and Applications in Statistics and Demography, ASMDA 2015 Proceedings: 16th Applied Stochastic Models and Data Analysis International Conference with 4th Demographics 2015 Workshop, ISAST: International Society for the Advancement of Science and Technology, pp. 375–388 (2016)Google Scholar
  7. 7.
    Engström, C., Silvestrov, S.: Calculating Pagerank in a changing network with added or removed edges. In: Proceedings of ICNPAA 2016 World Congress, AIP Conference Proceedings 1798, 020052-1-020052-8 (2017).  https://doi.org/10.1063/1.4972644
  8. 8.
    Gleich, D.F.: PageRank beyond the Web. SIAM Rev. 57(3), 321–363 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gleich, D.F., Gray, A.P., Greif, C., Lau, T.: An inner-outer iteration for computing PageRank. SIAM J. Sci. Comput. 32(1), 349–371 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Harris, J.M., Hirst, J.L., Mossinghoff, M.J.: Graph Theory. Combinatorics and Graph Theory, pp. 1–127. Springer, Berlin (2008)CrossRefGoogle Scholar
  11. 11.
    Hunter, J.J.: Stationary distributions of perturbed Markov chains. Linear Algebra Appl. 82, 201–214 (1986)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ishii, H., Tempo, R., Bai, E., Dabbene, F.: Distributed randomized PageRank computation based on web aggregation. In: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) Held Jointly with 2009 28th Chinese Control Conference, pp. 3026–3031 (2009)Google Scholar
  13. 13.
    Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust algorithm for reputation management in P2P networks. In: Proceedings of the 12th International Conference on World Wide Web, WWW’03, pp. 640–651 (2003)Google Scholar
  14. 14.
    Langville, A.N., Mayer, C.D.: Google’s PageRank and Beyond: The Science of Search Engine Rankings. Princeton University Press, Princeton (2006)Google Scholar
  15. 15.
    Lee, C.P.C., Golub, G.H., Zenios, S.A.: A fast two-stage algorithm for computing PageRank and its extensions. Sci. Comput. Comput. Math. 1(1), 1–9 (2003)Google Scholar
  16. 16.
    Mooney, B.L., Corrales, L.R., Clark, A.E.: Molecular networks: an integrated graph theoretic and data mining tool to explore solvent organization in molecular simulation. J. Comput. Chem. 33(8), 853–860 (2012)CrossRefGoogle Scholar
  17. 17.
    Morrison, J.L., Breitling, R., Higham, D.J., Gilbert, D.R.: GeneRank: using search engine technology for the analysis of microarray experiments. BMC Bioinform. 6(1), 233 (2005)CrossRefGoogle Scholar
  18. 18.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing Order to the Web. Stanford InfoLab (1999)Google Scholar
  19. 19.
    Xiong, Z., Zheng, B.: On the eigenvalues of a specially updated complex matrix. Comput. Math. Appl. 57(10), 1645–1650 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Yan, X., Han, J.: gSpan: graph-based substructure pattern mining. In: Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE International Conference, pp. 721–724 (2002)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Benard Abola
    • 1
    • 2
  • Pitos Seleka Biganda
    • 1
    • 3
  • Christopher Engström
    • 1
  • John Magero Mango
    • 2
  • Godwin Kakuba
    • 2
  • Sergei Silvestrov
    • 1
  1. 1.Division of Applied Mathematics, School of Education, Culture and CommunicationMälardalen UniversityVästeråsSweden
  2. 2.Department of Mathematics, School of Physical SciencesMakerere UniversityKampalaUganda
  3. 3.Department of Mathematics, College of Natural and Applied SciencesUniversity of Dar es SalaamDar es SalaamTanzania

Personalised recommendations