Advertisement

Random Fields Related to the Symmetry Classes of Second-Order Symmetric Tensors

  • Anatoliy Malyarenko
  • Martin Ostoja-Starzewski
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 271)

Abstract

Under the change of basis in the three-dimensional space by means of an orthogonal matrix g, a matrix A of a linear operator is transformed as \(A\mapsto gAg^{-1}\). Mathematically, the stationary subgroup of a symmetric matrix under the above action can be either \(D_2\times Z^c_2\), when all three eigenvalues of A are different, or \(\mathrm {O}(2)\times Z^c_2\), when two of them are equal, or \(\mathrm {O}(3)\), when all three eigenvalues are equal. Physically, one typical application relates to dependent quantities like a second-order symmetric stress (or strain) tensor. Another physical setting is that of dependent fields, such as conductivity with such three cases is the conductivity (or, similarly, permittivity, or anti-plane elasticity) second-rank tensor, which can be either orthotropic, transversely isotropic, or isotropic. For each of the above symmetry classes, we consider a homogeneous random field taking values in the fixed point set of the class that is invariant with respect to the natural representation of a certain closed subgroup of the orthogonal group. Such fields may model stochastic heat conduction, electric permittivity, etc. We find the spectral expansions of the introduced random fields.

Keywords

Random field Symmetry class Spectral expansion 

References

  1. 1.
    Altmann, S.L., Herzig, P.: Point-group Theory Tables. Oxford Science Publications, Clarendon Press (1994)Google Scholar
  2. 2.
    Forte, S., Vianello, M.: Symmetry classes for elasticity tensors. J. Elast. 43(2), 81–108 (1996).  https://doi.org/10.1007/BF00042505MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Geymonat, G., Weller, T.: Classes de symétrie des solides piézoélectriques. C. R. Math. Acad. Sci. Paris 335(10), 847–852 (2002).  https://doi.org/10.1016/S1631-073X(02)02573-6MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and groups in bifurcation theory. Vol. II, Applied Mathematical Sciences, vol. 69. Springer, New York (1988).  https://doi.org/10.1007/978-1-4612-4574-2CrossRefGoogle Scholar
  5. 5.
    Karhunen, K.: Über lineare Methoden in der Wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys. 1947(37), 79 (1947)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Malyarenko, A., Ostoja-Starzewski, M.: A random field formulation of Hooke’s law in all elasticity classes. J. Elast. 127(2), 269–302 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Malyarenko, A., Ostoja-Starzewski, M.: Tensor-Valued Random Fields for Continuum Physics. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2019)Google Scholar
  8. 8.
    Mulliken, R.S.: Electronic structures of polyatomic molecules and valence. IV. Electronic states, quantum theory of the double bond. Phys. Rev. 43, 279–302 (1933)CrossRefGoogle Scholar
  9. 9.
    Olive, M., Auffray, N.: Symmetry classes for even-order tensors. Math. Mech. Complex Syst. 1(2), 177–210 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Division of Applied Mathematics, School of Education Culture and CommunicationMälardalen UniversityVästeråsSweden
  2. 2.University of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations