Fabric Sensor Array Monitoring Pressure Distribution

  • Jiyong HuEmail author
  • Hele Zhang
  • Yuanyuan Gu
  • Yinda Zhu
  • Xuyuan Guo
  • Xudong Yang
Conference paper
Part of the Internet of Things book series (ITTCC)


To improve the sensing performance of fabric sensor array monitoring pressure distribution, the structure of fabric sensor array was designed and optimized. The fabric sensor array was fabricated by seamlessly laminating multi-layers clothing fabric, and the optimized sensor array can sense both the size and position of the distributed dynamic forces. The performance of the designed fabric sensor array was evaluated. When the force is 5–25 N, the fabric sensor array monitoring pressure distribution has highly sensitive to the applied force. In terms of the material and construction of fabric sensor array, the mesh size of isolating layer determines the sensitivity and response range.


Sensor Fabric Array Pressure Distribution Resistance 


  1. 1.
    Grau, A.M., et al.: Mechanical force redistribution: enabling seamless, large-format, high-accuracy surface interaction. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 4137–4146. ACM, Toronto, Ontario, Canada (2014)Google Scholar
  2. 2.
    Zhou, B., et al.: Textile Pressure Force Mapping. Springer International Publishing (2017)Google Scholar
  3. 3.
    Li, J.F., et al.: Novel highly sensitive and wearable pressure sensors from conductive three-dimensional fabric structures. Smart Mater. Struct. 24(12), 125022 (2015)CrossRefGoogle Scholar
  4. 4.
    Behroo, S.M., et al.: Fabric-based pressure sensor arrays and methods for data analysis. Patent, USA (2013)Google Scholar
  5. 5.
    Xu, W., et al.: eCushion: a textile pressure sensor array design and calibration for sitting posture analysis. IEEE Sens. J. 13(10), 3926–3934 (2013)CrossRefGoogle Scholar
  6. 6.
    Parzer, P., et al.: FlexTiles: a flexible, stretchable, formable, pressure-sensitive, tactile input sensor. In: Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, pp. 3754–3757. ACM, Santa Clara, California, USA (2016)Google Scholar
  7. 7.
    Danilovic, A.: SmartCast—novel textile sensors for embedded pressure sensing of orthopedic casts. University of California (2013)Google Scholar
  8. 8.
    Philip, C., et al.: Fabric-based pressure sensor array for decubitus ulcer monitoring. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6506–6509. IEEE, Osaka, Japan (2013)Google Scholar
  9. 9.
    Büscher, G.H., et al.: Flexible and stretchable fabric-based tactile sensor. Robot. Autonom. Syst. 63, 244–252 (2015)CrossRefGoogle Scholar
  10. 10.
    Saenz-Cogollo, J., et al.: Pressure mapping mat for tele-home care applications. Sensors 16(3). (2016)CrossRefGoogle Scholar
  11. 11.
    Takamatsu, S., et al.: Meter-scale large-area capacitive pressure sensors with fabric with stripe electrodes of conductive polymer-coated fibers. Microsyst. Technol. 22(3), 451–457 (2016)CrossRefGoogle Scholar
  12. 12.
    Samad, Y.A., et al.: From sewing thread to sensor: Nylon (R) fiber strain and pressure sensors. Sens. Actuators B-Chem. 240, 1083–1090 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jiyong Hu
    • 1
    Email author
  • Hele Zhang
    • 1
  • Yuanyuan Gu
    • 1
  • Yinda Zhu
    • 1
  • Xuyuan Guo
    • 1
  • Xudong Yang
    • 1
  1. 1.Donghua UniversityShanghaiChina

Personalised recommendations