Advertisement

Genetic-Algorithm-Based Feature-Selection Technique for Fall Detection Using Multi-placement Wearable Sensors

  • I Putu Edy Suardiyana Putra
  • Rein Vesilo
Conference paper
Part of the Internet of Things book series (ITTCC)

Abstract

For a machine-learning-based fall-detection approach using wearable sensors, having a high number of features can not only cause a reduction in the detection rate because of irrelevant features, but it can also cause a high computational cost. Therefore, the number of features needs to be reduced through a feature-selection technique. However, current studies in fall-detection only consider features that can give an optimum detection rate without considering their computational cost. Having features with a high computational cost on wearable devices can cause their battery to drain fast. This paper presents a genetic-algorithm-based feature-selection technique that can search for a subset of low-computational-cost features from different sensor placements, where those features can give a relatively good detection rate in terms of F-score. The experimental results show that our technique is able to select a subset of low-computational-cost features that can achieve up to 97.7% of F-score on average. Compared to the SelectKBest and Recursive Feature Elimination (RFE) techniques (a filter and an embedded feature-selection technique, respectively), our approach is able to select features that can give a comparable F-score and significantly lower computational cost.

Notes

Acknowledgements

This work was supported by an International Macquarie University Research Excellence Scholarship (iMQRES) and a Coventry University studentship, under a co-tutelle scheme. The authors would like to thank Professor Elena Gaura and Dr. James Brusey (Coventry University) for their insightful inputs.

References

  1. 1.
    Abbate, S., Avvenuti, M., Bonatesta, F., Cola, G., Corsini, P., Vecchio, A.: A smartphone-based fall detection system. Pervas. Mobile Comput. 8(6), 883–899 (2012).  https://doi.org/10.1016/j.pmcj.2012.08.003CrossRefGoogle Scholar
  2. 2.
    Age UK: Stop Falling: Start Saving Lives and Money. http://www.ageuk.org.uk/documents/en-gb/campaigns/stop_falling_report_web.pdf?dtrk=true (2013). Accessed 2 Mar 2017
  3. 3.
    Atallah, L., Lo, B., King, R., Yang, G.Z.: Sensor positioning for activity recognition using wearable accelerometers. IEEE Trans. Biomed. Circ. Syst. 5(4), 320–329 (2011).  https://doi.org/10.1109/TBCAS.2011.2160540CrossRefGoogle Scholar
  4. 4.
    Bourke, A.K., O’Donovan, K.J., Nelson, J., OLaighin, G.M.: Fall-detection through vertical velocity thresholding using a tri-axial accelerometer characterized using an optical motion-capture system. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2832–2835. Vancouver, BC (2008).  https://doi.org/10.1109/IEMBS.2008.4649792
  5. 5.
    Brusey, J., Rednic, R., Gaura, E.I., Kemp, J., Poole, N.: Postural activity monitoring for increasing safety in bomb disposal missions. Meas. Sci. Technol. 20(7), 075–204 (2009).  https://doi.org/10.1088/0957-0233/20/7/075204CrossRefGoogle Scholar
  6. 6.
    Burns, A., Greene, B.R., McGrath, M.J., O’Shea, T.J., Kuris, B., Ayer, S.M., Stroiescu, F., Cionca, V., Shimmer, A.: Wireless sensor platform for noninvasive biomedical research. IEEE Sens. J. 10(9), 1527–1534 (2010).  https://doi.org/10.1109/JSEN.2010.2045498CrossRefGoogle Scholar
  7. 7.
    Dunkels, A., Osterlind, F., Tsiftes, N., He, Z.: Software-based on-line energy estimation for sensor nodes. In: Proceedings of the 4th Workshop on Embedded Networked Sensors, EmNets ’07, pp. 28–32. ACM, New York, NY, USA (2007).  https://doi.org/10.1145/1278972.1278979
  8. 8.
    Gaura, E., Kemp, J., Brusey, J.: Leveraging knowledge from physiological data: on-body heat stress risk prediction with sensor networks. IEEE Trans. Biomed. Circ. Syst. 7(6), 861–870 (2013).  https://doi.org/10.1109/TBCAS.2013.2254485CrossRefGoogle Scholar
  9. 9.
    Gjoreski, H., Lustrek, M., Gams, M.: Accelerometer placement for posture recognition and fall detection. In: 2011 Seventh International Conference on Intelligent Environments, pp. 47–54. IEEE (2011).  https://doi.org/10.1109/IE.2011.11
  10. 10.
    Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003). http://dl.acm.org/citation.cfm?id=944919.944968
  11. 11.
    Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46(1), 389–422 (2002). https://doi.org/10.1023/A:1012487302797CrossRefGoogle Scholar
  12. 12.
    Igual, R., Medrano, C., Plaza, I.: Challenges, issues and trends in fall detection systems. Biomed. Eng. Online 12, 66 (2013).  https://doi.org/10.1186/1475-925X-12-66CrossRefGoogle Scholar
  13. 13.
    Igual, R., Medrano, C., Plaza, I.: A comparison of public datasets for acceleration-based fall detection. Med. Eng. Phys. 37(9), 870–878 (2015).  https://doi.org/10.1016/j.medengphy.2015.06.009CrossRefGoogle Scholar
  14. 14.
    Karantonis, D.M., Narayanan, M.R., Mathie, M., Lovell, N.H., Celler, B.G.: Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans. Informat. Technol. Biomed. 10(1), 156–167 (2006).  https://doi.org/10.1109/TITB.2005.856864CrossRefGoogle Scholar
  15. 15.
    Kau, L.J., Chen, C.S.: A smart phone-based pocket fall accident detection, positioning, and rescue system. IEEE J. Biomed. Health Informat. 19(1), 44–56 (2015).  https://doi.org/10.1109/JBHI.2014.2328593CrossRefGoogle Scholar
  16. 16.
    Lara, O.D., Labrador, M.A.: A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. & Tutor. 15(3), 1192–1209 (2013).  https://doi.org/10.1109/SURV.2012.110112.00192CrossRefGoogle Scholar
  17. 17.
    Le, H.T., Van Tran, L.: Automatic feature selection for named entity recognition using genetic algorithm. In: Proceedings of the Fourth Symposium on Information and Communication Technology, SoICT ’13, pp. 81–87. ACM, New York, NY, USA (2013).  https://doi.org/10.1145/2542050.2542056. http://doi.acm.org/10.1145/2542050.2542056
  18. 18.
    Li, J., Li, M., Wang, Z., Zhao, Q.: An improved classification method for fall detection based on Bayesian framework. In: 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 237–242 (2015).  https://doi.org/10.1109/ROBIO.2015.7418773
  19. 19.
    Noury, N., Fleury, A., Rumeau, P., Bourke, A., Laighin, G., Rialle, V., Lundy, J.: Fall detection—principles and Methods. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1663–1666 (2007).  https://doi.org/10.1109/IEMBS.2007.4352627
  20. 20.
    Nowotny, T.: Two challenges of correct validation in pattern recognition. Front. Robotics AI 1, 5 (2014).  https://doi.org/10.3389/frobt.2014.00005. https://www.frontiersin.org/article/10.3389/frobt.2014.00005
  21. 21.
    Oh, I.S., Lee, J.S., Moon, B.R.: Hybrid genetic algorithms for feature selection. IEEE Trans. Pattern Anal. Mach. Intelligen. 26(11), 1424–1437 (2004).  https://doi.org/10.1109/TPAMI.2004.105CrossRefGoogle Scholar
  22. 22.
    Ojetola, O.: Detection of Human Falls using Wearable Sensors. Ph.D. thesis, Coventry University (2013)Google Scholar
  23. 23.
    Ojetola, O., Gaura, E., Brusey, J.: Data set for fall events and daily activities from inertial sensors. In: Proceedings of the 6th ACM Multimedia Systems Conference, MMSys ’15, pp. 243–248. ACM, New York, NY, USA (2015).  https://doi.org/10.1145/2713168.2713198
  24. 24.
    Ojetola, O., Gaura, E.I., Brusey, J.: Fall detection with wearable sensors - Safe (SmArt Fall dEtection). In: IEEE 2011 Proceedings of 7th International Conference on Intelligent Environments, pp. 318–321 (2011).  https://doi.org/10.1109/IE.2011.38
  25. 25.
    Organization, W.H.: Falls (2012). http://www.who.int/mediacentre/factsheets/fs344/en/. Accessed 2 Mar 2017
  26. 26.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Putra, I.P.E.S., Brusey, J., Gaura, E., Vesilo, R.: An event-triggered machine learning approach for accelerometer-based fall detection. Sensors 18(1) (2018).  https://doi.org/10.3390/s18010020. http://www.mdpi.com/1424-8220/18/1/20CrossRefGoogle Scholar
  28. 28.
    Shan, S., Yuan, T.: A wearable pre-impact fall detector using feature selection and support vector machine. In: IEEE 10th International Conference On Signal Processing Proceedings, pp. 1686–1689 (2010).  https://doi.org/10.1109/ICOSP.2010.5656840
  29. 29.
    Suardiyana, I.P.E., Brusey, J., Gaura, E.: A cascade-classifier approach for fall detection. In: 5th EAI International Conference on Wireless Mobile Communication and Healthcare (2015)Google Scholar
  30. 30.
    Vallejo, M., Isaza, C., Lopez, J.: Artificial neural networks as an alternative to traditional fall detection methods. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1648–1651 (2013).  https://doi.org/10.1109/EMBC.2013.6609833
  31. 31.
    Wang, S., Yang, J., Chen, N., Chen, X., Zhang, Q.: Human activity recognition with user-free accelerometers in the sensor networks. In: International Conference on Neural Networks and Brain, vol. 2, pp. 1212–1217. Beijing, China (2005).  https://doi.org/10.1109/ICNNB.2005.1614831
  32. 32.
    Wang, Z., Wu, D., Chen, J., Ghoneim, A., Hossain, M.A.: A triaxial accelerometer-based human activity recognition via eemd-based features and game-theory-based feature selection. IEEE Sens. J. 16(9), 3198–3207 (2016).  https://doi.org/10.1109/JSEN.2016.2519679CrossRefGoogle Scholar
  33. 33.
    Yang, J., Honavar, V.: Feature subset selection using a genetic algorithm, pp. 117–136. Springer US, Boston, MA (1998).  https://doi.org/10.1007/978-1-4615-5725-8_8. http://dx.doi.org/10.1007/978-1-4615-5725-8_8CrossRefGoogle Scholar
  34. 34.
    Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res. 5, 1205–1224 (2004).  https://doi.org/10.1145/1014052.1014149MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of EngineeringMacquarie UniversitySydneyAustralia

Personalised recommendations