Advertisement

Medical Quality of Service Optimization over Joint Body Sensor Networks and Internet of Multimedia Things

  • Ali Hassan SodhroEmail author
  • Aicha Sekhari
  • Yacine Ouzrout
  • Gul Hassan Sodhro
  • Noman Zahid
  • Sandeep Pirbhulal
  • M. Irfan Younas
Conference paper
Part of the Internet of Things book series (ITTCC)

Abstract

This paper proposes novel Rate Control Video Transmission Algorithm (RCVTA) to optimize medical quality of service (m-QoS) in terms of network metrics such as, standard deviation (Std dev), throughput, peak-to-mean ratio (PMR), delay, average delay, jitter and average jitter during transmission of high-definition (HD) video stream named ‘Tracking and Retargeting in GI endoscopy’ over joint Internet of Multimedia Things (IoMT) and Body Sensor Networks (BSNs). Experimental results reveal that m-QoS is optimized with workahead transmission over joint BSN and IoMT networks for Tele-surgery.

Keywords

Pre-recorded High definition Telemedicine RCVTA IoMT BSN Telemedicine Tele-surgery 

References

  1. 1.
    Alvi, S.A., et al.: Internet of multimedia things: vision and challenges. Ad Hoc Netw. 33, 87–111 (2015)CrossRefGoogle Scholar
  2. 2.
    Atzman, O., et al.: The convergence of eHealth and IoT in the future of healthcare. In: IoT Congress and Exhibition 2014. Hasharon Hotel Herzliya, Israel (2014)Google Scholar
  3. 3.
    Shah, G.A.: Enabling green video transmission over internet of things (2014)Google Scholar
  4. 4.
    Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29(7), 1645–1660 (2013)CrossRefGoogle Scholar
  5. 5.
    Hassan, A., Li, Y.: Medical quality-of-service optimization in wireless telemedicine system using optimal smoothing algorithm. E-Health Telecommun. Syst. Netw. J. 2(1) (2013)Google Scholar
  6. 6.
    Westerborn, J.: On particle-based online smoothing and parameter inference in general hidden Markov models. KTH Royal Institute of Technology (2015)Google Scholar
  7. 7.
    Sodhro, A.H., Li Y., Shah, M.A.: Green and friendly media transmission algorithms for wireless body sensor networks. Multimed. Tools Appl. 76(19), 20001–20025 (2016)CrossRefGoogle Scholar
  8. 8.
    Sandeep, P., Zhang, H., Wu, W., Zhang, Y.-T.: A comparative study of fuzzy vault based security methods for wireless body sensor networks. In: IEEE 10th International Conference on Sensing Technology (ICST), pp. 1–6 (2016)Google Scholar
  9. 9.
    Sodhro, A.H., Fortino, G.: Energy management during video transmission in WBSNs. In: 14th IEEE International Conference on Networking, Sensing an Control (ICNSC), pp. 1–6. Calabria, Italy (2017)Google Scholar
  10. 10.
    Zhang, X.M., Xu, C.: A multimedia telemedicine system in internet of things. In: 2nd International Conference on Information and Multimedia Technology (ICIMT 2010) IPCSIT, vol. 42. Singapore (2012)Google Scholar
  11. 11.
    Sodhro, A.H., Li, Y., Shah, M.A.: Green and battery-friendly video streaming in wireless body sensor networks. J. Multimed. Tools Appl. 67(10), 1–25 (2016)Google Scholar
  12. 12.
    Sodhro, A.H., Shah, M.A.: Role of 5G in medical health. In: IEEE International Conference on Innovations in Electrical Engineering and Computational Technologies (ICIEECT), Indus University, Karachi, Pakistan (2017)Google Scholar
  13. 13.
    Aggarwal, C.C., Ashish, N., Sheth, A.: The internet of things: a survey from the data-centric perspective. In: Managing Cooperation Among Heterogeneous Multimedia Devices and Mining Sensor Data, Springer, pp. 383–428 (2013)Google Scholar
  14. 14.
    Hassan, A., Li, Y., Shah, M.A.: Energy-efficient adaptive transmission power control in wireless body area networks. IET Commun. 10(1), 81–90 (2016)Google Scholar
  15. 15.
    Sodhro, A.H., Kumar, A., Sodhro, G.H.: 5G-based transmission power control mechanism in fog computing for IoT devices. MDPI Sustain. 10(4), 1–17 (2018)Google Scholar
  16. 16.
    Jornet, J.M., Akyildiz, I.F.: The internet of multimedia nano-things in the Terahertz band. In: Wireless Conference (European Wireless), 2012 18th European. VDE (2012)Google Scholar
  17. 17.
    Sandivine, Sandvine Global Internet Phenomena Complete (2014)Google Scholar
  18. 18.
    Cisco VNI: The Zettabyte Era: Trends and Analysis, June 2014Google Scholar
  19. 19.
  20. 20.
    Distefano, S., Merlino, G., Puliafito, A.: A utility 471–480 paradigm for IoT: the sensing cloud, Perv. Mob. Comput. (2014)Google Scholar
  21. 21.
    Sodhro, A.H., Kumar, A.: An energy-efficient algorithm for wearable electrocardiogram signal processing in ubiquitous healthcare applications. MDPI Sens. 8(3), 923 (2018)CrossRefGoogle Scholar
  22. 22.
    Fazio, M., Puliafito, A.: Cloud4sens: a cloud-based architecture for sensor controlling and monitoring. IEEE Commun. Mag. 53(3), 41–47 (2015)CrossRefGoogle Scholar
  23. 23.
    Distefano, S., Merlino, G., Puliafito, A.: Device-centric sensing: an alternative to data-centric approaches. IEEE. Syst. J. (2015)Google Scholar
  24. 24.
    Sodhro, A.H., Li, Y.: Battery-friendly packet transmission strategies for wireless capsule endoscopy. In: The International Conference on Health Informatics, International Federation for Medical and Biological Engineering (IFMBE) Proceedings, vol. 42, pp. 236–239 (2014)Google Scholar
  25. 25.
    Imperial College London. http://hamlyn.doc.ic.ac.uk/vision/
  26. 26.
    Gravina, R., Alinia, P., Ghasemzadeh, H., Fortino, G.: Multi-sensor fusion in body sensor networks: state-of-the-art and research challenges. Inf. Fusion 35, 68–80 (2017)CrossRefGoogle Scholar
  27. 27.
    Sodhro, A.H., Sangaiah, A.K., Pirphulal, S., Sekhari, A., Ouzrout, Y.: Green media-aware medical IoT system. In: Multimedia Tools and Applications, pp. 1–20. Springer. http://link.springer.com/article/10.1007/s11042-018-5634-0 (2018)
  28. 28.
    Fortino, G., et al.: A framework for collaborative computing and multi-sensor data fusion in body sensor networks. Inf. Fusion 22, 50–70 (2015)CrossRefGoogle Scholar
  29. 29.
    Fortino, G., et al.: BodyCloud: a SaaS approach for community body sensor networks. Future Gen. Comp. Syst. 35, 62–79 (2014)CrossRefGoogle Scholar
  30. 30.
    Sodhro, A.H., Sekahri, A., Ouzrout, Y.: Energy-efficiency comparison between data rate control and transmission power control algorithms for wireless body sensor networks. Int. J. Distrib. Sensor Netw. (IJDSN) 14(1), 1–18 (2018)CrossRefGoogle Scholar
  31. 31.
    Fortino, G., et al.: Enabling effective programming and flexible management of efficient body sensor network applications. IEEE Trans. Human-Mach. Syst. 43(1), 115–133 (2013)CrossRefGoogle Scholar
  32. 32.
    Sodhro, A.H., Sangaiah, A.K.: Convergence of IoT and product lifecycle management in medical health care. In: Future Generation Computer Systems: Special Issue on Emerging Edge-of-Things Computing: Opportunities and Challenges, vol. 86, pp. 380–391. Elsevier (2018)Google Scholar
  33. 33.
    Xu, X.J., Andrepoulos, Y., Xiao, Y., van der Schaar, M.: Non-stationary resource allocation policies for delay-constrained video streaming: application to video over internet-of-things-enabled networks (2014)CrossRefGoogle Scholar
  34. 34.
    Hassan, A., Li, Y., Shah M.A.: Novel key storage and management solution for the security of wireless sensor networks. Ind. J. Electr. Eng. TELKOMNIKA 11(6), 3383–3390 (2013)Google Scholar
  35. 35.
    Sodhro, A.H., Pirbhulal S.: Power control algorithms for media transmission in remote healthcare systems. IEEE Access 6 (2018)CrossRefGoogle Scholar
  36. 36.
    Sodhro A.H., et al.: Convergence of IoT and product lifecycle management in medical health care “Future generation computer systems: Special issue on emerging edge-of-things computing: Opportunities and challenges. Elsevier 86(2018), 380–391 (2018)CrossRefGoogle Scholar
  37. 37.
    Sodhro A.H., Kumar A.: An energy-efficient algorithm for wearable electrocardiogram signal processing in ubiquitous 3 healthcare applications. MDPI Sensors 8(3), 923 (2018)CrossRefGoogle Scholar
  38. 38.
    Sodhro A.H., Sekahri A., Ouzrout Y.: Energy-efficiency comparison between data rate control and transmission power control algorithms for wireless body sensor networks. International Journal of Distributed Sensor Networks (IJDSN) 14(1), 1–18 (2018)CrossRefGoogle Scholar
  39. 39.
    Sodhro A.H., Pirphulal S., Sekhari A., Ouzrout Y.: Green media-aware medical IoT system, multimedia tools & applications. Springer, pp.1–20, 2018. http://link.springer.com/article/10.1007/s11042-018-5634-0
  40. 40.
    Sodhro A.H., Kumar A., Sodhro G.H.: 5G-based transmission power control mechanism in fog computing for IoT devices. MDPI Sustainability 10(4), 1–17 (2018)CrossRefGoogle Scholar
  41. 41.
    Dhumane, A., Prasad, R., Prasad, J.: Routing issues in internet of things: a survey. In: Proceedings of IMECS 2016, Hongkong, China (2016)Google Scholar
  42. 42.
    Pirbhulal, S., et al.: Analysis of efficient biometric index using heart rate variability for remote monitoring of obstructive sleep apnea, neuropsychiatry (2017)Google Scholar
  43. 43.
    Yun-qiang, L., Song-yu, Y., Xiang-wen, W., Jun, Z.: Segment-based traffic smoothing algorithm for VBR video stream. J. Zhejiang Univ. Sci. A 7(4), 543–548Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ali Hassan Sodhro
    • 1
    • 2
    Email author
  • Aicha Sekhari
    • 2
  • Yacine Ouzrout
    • 2
  • Gul Hassan Sodhro
    • 3
  • Noman Zahid
    • 1
  • Sandeep Pirbhulal
    • 4
  • M. Irfan Younas
    • 1
  1. 1.Sukkur IBA UniversitySukkurPakistan
  2. 2.DISP LABUniversity Lumiere Lyon 2LyonFrance
  3. 3.Shah Abdul Latif UniversityKhairpurPakistan
  4. 4.SIAT, CASShenzhenChina

Personalised recommendations