Vanishing Point Conducted Diffusion for Crop Rows Detection

  • Jian WuEmail author
  • Mengwei Deng
  • Lianlian Fu
  • Jianqun Miao
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 885)


A partial differential equation based diffusion is presented for crop rows detection. In the diffusion, the evolving direction is estimated through the vanishing point, which is one of global feature of row-crop images. According to the vanishing point, we generate the orientations of row crop textures, and then integrate the induced field of directions into an oriented diffusion. After processing the row-crop image with the new diffusion, we extract the crop rows from its black-white version using a morphological operation. Experiments on the real row-crop image data show the proposed diffusion can suppress the undesired interference more efficiently than the other diffusion when extracting crop rows.


Partial differential equation Vanishing point Oriented diffusion Crop row detection 



This work is supported by the National Natural Science Foundation of China (NNSFC) (Grant 61561025 and 71561014).


  1. 1.
    Leemans, V., Destain, M.-F.: Line cluster detection using a variant of the Hough transform for culture row localisation. Image Vis. Comput. 24(5), 541–550 (2006)CrossRefGoogle Scholar
  2. 2.
    Roviramas, F., Zhang, Q., Reid, J.F., Will, J.D.: Hough-transform-based vision algorithm for crop row detection of an automated agricultural vehicle. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 219(8), 999–1010 (2005)CrossRefGoogle Scholar
  3. 3.
    Perezortiz, M., Pena, J.M., Gutierrez, P.A., Torressanchez, J., Hervasmartinez, C., Lopezgranados, F.: A semi-supervised system for weed mapping in sunflower crops using unmanned aerial vehicles and a crop row detection method. Appl. Soft Comput. 37, 533–544 (2015)CrossRefGoogle Scholar
  4. 4.
    Ji, R., Qi, L.: Crop-row detection algorithm based on random Hough transformation. Math. Comput. Model. 54(3), 1016–1020 (2011)CrossRefGoogle Scholar
  5. 5.
    Romeo, J., Pajares, G., Montalvo, M., Guerrero, J.M., Guijarro, M., Ribeiro, A.: Crop row detection in maize fields inspired on the human visual perception. Sci. World J. 2012, Article ID 484390 (2012) Google Scholar
  6. 6.
    Reiser, D.: Crop row detection in maize for developing navigation algorithms under changing plant growth stages. In: Robot 2015: Second Iberian Robotics Conference, pp. 371–382 (2016)Google Scholar
  7. 7.
    Guerrero, J.M., Guijarro, M., Montalvo, M., Romeo, J., Emmi, L., Ribeiro, A., Pajares, G.: Automatic expert system based on images for accuracy crop row detection in maize fields. Expert Syst. Appl. 40(2), 656–664 (2013)CrossRefGoogle Scholar
  8. 8.
    Vidović, I., Cupec, R., Hocenski, Z.: Crop row detection by global energy minimization. Pattern Recognit. 55, 68–86 (2016)CrossRefGoogle Scholar
  9. 9.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)CrossRefGoogle Scholar
  10. 10.
    You, Y.-L., Kaveh, M.: Fourth-order partial differential equations for noise removal. IEEE Trans. Image Process. 9(10), 1723–1730 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Alvarez, L., Lions, P.-L., Morel, J.-M.: Image selective smoothing and edge detection by nonlinear diffusion. II. SIAM J. Numer. Anal. 29(3), 845–866 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Weickert, J.: Coherence-enhancing diffusion filtering. Int. J. Comput. Vis. 31(2–3), 111–127 (1999)CrossRefGoogle Scholar
  13. 13.
    Tschumperle, D., Deriche, R.: Vector-valued image regularization with PDEs: a common framework for different applications. IEEE Trans. Pattern Anal. Mach. Intell. 27(4), 506–517 (2005)CrossRefGoogle Scholar
  14. 14.
    Weickert, J.: Anisotropic Diffusion in Image Processing, vol. 16, p. 272. Teubner, Stuttgart (1996)zbMATHGoogle Scholar
  15. 15.
    Sapiro, G.: Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, Cambridge (2006)zbMATHGoogle Scholar
  16. 16.
    Witkin, A.: Scale-space filtering: a new approach to multi-scale description. In: Acoustics, Speech, and Signal Processing, IEEE ICASSP 1984, vol. 9, pp. 150–153 (1984)Google Scholar
  17. 17.
    Chan, T.F., Shen, J.J.: Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods, pp. 110–115. Society for Industrial and Applied Mathematics, Philadelphia (2005)zbMATHCrossRefGoogle Scholar
  18. 18.
    Guidotti, P., Lambers, J.V.: Two new nonlinear nonlocal diffusions for noise reduction. J. Math. Imag. Vis. 33(1), 25–37 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Guidotti, P., Longo, K.: Two enhanced fourth order diffusion models for image denoising. J. Math. Imag. Vis. 40(2), 188–198 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Chen, Y., Barcelos, C.A.Z., Mair, B.A.: Smoothing and edge detection by time-varying coupled nonlinear diffusion equations. Comput. Vis. Image Underst. 82(2), 85–100 (2001)zbMATHCrossRefGoogle Scholar
  21. 21.
    Luo, H., Zhu, L., Ding, H.: Coupled anisotropic diffusion for image selective smoothing. Signal Process. 86(7), 1728–1736 (2006)zbMATHCrossRefGoogle Scholar
  22. 22.
    Tang, C., Han, L., Ren, H., Gao, T., Wang, Z., Tang, K.: The oriented-couple partial differential equations for filtering in wrapped phase patterns. Opt. Express 17(7), 5606–5617 (2009)CrossRefGoogle Scholar
  23. 23.
    Heydari, M., Karami, M., Babakhani, A.: A new adaptive coupled diffusion PDE for MRI Rician noise. SIViP 10(7), 1211–1218 (2016)CrossRefGoogle Scholar
  24. 24.
    Xu, J., Jia, Y., Shi, Z., Pang, K.: An improved anisotropic diffusion filter with semi-adaptive threshold for edge preservation. Signal Process. 119(C), 80–91 (2016)CrossRefGoogle Scholar
  25. 25.
    Ramosllordn, G., Vegassnchezferrero, G., Martinfernandez, M., Alberolalpez, C., Ajafernndez, S.: Anisotropic diffusion filter with memory based on speckle statistics for ultrasound images. IEEE Trans. Image Process. 24(1), 345–358 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Jain, S.K., Ray, R.K.: An alternative framework of anisotropic diffusion for image denoising. In: International Conference on Information and Communication Technology for Competitive Strategies, pp. 1–6 (2016)Google Scholar
  27. 27.
    Yuan, J.: Improved anisotropic diffusion equation based on new non-local information scheme for image denoising. IET Comput. Vis. 9(6), 864–870 (2015)CrossRefGoogle Scholar
  28. 28.
    Cho, S.I., Kang, S.-J., Kim, H.-S., Kim, Y.H.: Dictionary-based anisotropic diffusion for noise reduction. Pattern Recognit. Lett. 46, 36–45 (2014)CrossRefGoogle Scholar
  29. 29.
    Tsiotsios, C., Petrou, M.: On the choice of the parameters for anisotropic diffusion in image processing. Pattern Recognit. 46(5), 1369–1381 (2013)CrossRefGoogle Scholar
  30. 30.
    Yu, X., Wu, C., Jia, T., Chen, S.: A time-dependent anisotropic diffusion image smoothing method. In: International Conference on Intelligent Control and Information Processing, pp. 859–862 (2011)Google Scholar
  31. 31.
    Tang, C., Wang, Z., Wang, L., Wu, J., Gao, T., Yan, S.: Estimation of fringe orientation for optical fringe patterns with poor quality based on Fourier transform. Appl. Opt. 49(4), 554–561 (2010)CrossRefGoogle Scholar
  32. 32.
    Wang, H., Qian, K., Gao, W., Lin, F., Seah, H.S.: Fringe pattern denoising using coherence-enhancing diffusion. Opt. Lett. 34(8), 1141–1143 (2009)CrossRefGoogle Scholar
  33. 33.
    Tang, C., Han, L., Ren, H., Zhou, D., Chang, Y., Wang, X., Cui, X.: Second-order oriented partial-differential equations for denoising in electronic-speckle-pattern interferometry fringes. Opt. Lett. 33(19), 2179–2181 (2008)CrossRefGoogle Scholar
  34. 34.
    Hong, L., Wan, Y., Jain, A.: Fingerprint image enhancement: algorithm and performance evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 777–789 (1998)CrossRefGoogle Scholar
  35. 35.
    Tellaeche, A., BurgosArtizzu, X.P., Pajares, G., Ribeiro, A., Fernandez-Quintanilla, C.: A new vision-based approach to differential spraying in precision agriculture. Comput. Electron. Agric. 60(2), 144–155 (2008)CrossRefGoogle Scholar
  36. 36.
    Hughes, C., McFeely, R., Denny, P., Glavin, M., Jones, E.: Equidistant (fθ) fish-eye perspective with application in distortion centre estimation. Image Vis. Comput. 28(3), 538–551 (2010)CrossRefGoogle Scholar
  37. 37.
    Kong, H., Audibert, J.-Y., Ponce, J.: Vanishing point detection for road detection. In: Computer Vision and Pattern Recognition, pp. 96–103 (2009)Google Scholar
  38. 38.
    Tsai, Y.-M., Chang, Y.-L., Chen, L.-G.: Block-based vanishing line and vanishing point detection for 3D scene reconstruction. In: 2006 International Symposium on Intelligent Signal Processing and Communications, pp. 586–589 (2006)Google Scholar
  39. 39.
    Barnard, S.T.: Interpreting perspective images. Artif. Intell. 21(4), 435–462 (1983)CrossRefGoogle Scholar
  40. 40.
    McLean, G., Kotturi, D.: Vanishing point detection by line clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17(11), 1090–1095 (1995)CrossRefGoogle Scholar
  41. 41.
    Förstner, W.: Optimal vanishing point detection and rotation estimation of single images from a legoland scene. In: Proceedings of ISPRS Commission III Symposium on Photogrammetric Computer Vision and Image Analysis, pp. 157–162 (2010)Google Scholar
  42. 42.
    Almansa, A., Desolneux, A., Vamech, S.: Vanishing point detection without any a priori information. IEEE Trans. Pattern Anal. Mach. Intell. 25(4), 502–507 (2003)CrossRefGoogle Scholar
  43. 43.
    Antolovic, D., Leykin, A., Johnson, S.D.: Vanishing point: a visual road-detection program for a DARPA grand challenge vehicle. Indiana University (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jian Wu
    • 1
    Email author
  • Mengwei Deng
    • 1
  • Lianlian Fu
    • 1
  • Jianqun Miao
    • 1
  1. 1.College of ScienceJiangxi Agricultural UniversityNanchangChina

Personalised recommendations