Temperature Anomaly Detection Based on Gaussian Distribution Hypothesis

  • Liu PengEmail author
  • Li Qiang
  • Liu Wen
  • Duan Min
  • Dai Yue
  • Wang Yanrong
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 885)


Use RFID technology to solve the cold chain logistics management of real-time temperature monitoring problems; Face the ensuing data explosion problem, combined with RFID. The data mining algorithm and the cold chain temperature control actual demand, based on the Gaussian distribution hypothesis temperature anomaly detection, further optimizes, then through the experiment proved the algorithm accuracy; Finally, the future development direction of the RFID cold chain temperature control research is prospected.


Cold chain logistics Temperature sensing RFID Exception detection 


  1. 1.
    Kifer, D., Ben-David, S., Gehrke, J.: Detecting change in data streams. In: Proceeding of VLDB 2004 (2004)CrossRefGoogle Scholar
  2. 2.
    Liu, Y., Sprague, A.P.: Outlier detection and evaluation by network flow. Int. J. Comput. Appl. Technol. 33(2–3), 237–246 (2008)CrossRefGoogle Scholar
  3. 3.
    Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2001)Google Scholar
  4. 4.
    Aggarwal, C., Han, C., Wang, J., et al.: A framework for clustering evolving data streams. In: Proceedings of the 29th International Conference on Very Large Data Bases (2003)CrossRefGoogle Scholar
  5. 5.
    Bottani, E., Rizzi, A.: Economical assessment of the impact of RFID technology and EPC system on the fast-moving consumer goods supply chain. Int. J. Prod. Econ. 112(2), 548–569 (2008)CrossRefGoogle Scholar
  6. 6.
    Bendavid, Y., Lefebvre, E., Lefebvre, L.A., Fosso-Wamba, S.: Key performance indicators for the evaluation of RFID-enabled B-to-B E-commerce applications: the case of a five-layer supply chain. Inf. Syst. E-Bus. Manag. 7(1), 1–20 (2009)CrossRefGoogle Scholar
  7. 7.
    Amador, C., Emond, J.P., do Nascimento Nunes, M.C.: Application of RFID technologies in the temperature mapping of the pineapple supply chain. Sens. Instrum. Food Qual. Saf. 3(1), 26–33 (2009)CrossRefGoogle Scholar
  8. 8.
    Wang, F., Liu, S., Liu, P., Bai, Y.: Temporal management of RFID data. In: Proceedings of the 31st International Conference on Very Large Data Bases (2005)Google Scholar
  9. 9.
    Hoffman, W.: Hot market, cool freight. Can. J. Commer. (2006)Google Scholar
  10. 10.
    Abad, E., Palacio, F., Nuin, M., De Zarate, A.G., Juarros, A., Gómez, J.M., Marco, S.: RFID smart tag for traceability and cold chain monitoring of foods: demonstration in an intercontinental fresh fish logistic chain. J. Food Eng. 93(4), 394–399 (2009)CrossRefGoogle Scholar
  11. 11.
    Hu, Y., Sundara, S., Chorma, T., Srinivasan, J.: Supporting RFID-based item tracking applications in Oracle DBMS using a bitmap datatype. In: Proceedings of the 31st International Conference on Very Large Data Bases (2005)Google Scholar
  12. 12.
    Jedermann, R., Ruiz-Garcia, L., Lang, W.: Spatial temperature profiling by semi-passive RFID loggers for perishable food transportation. Comput. Electron. Agric. 65(2), 145–154 (2009)CrossRefGoogle Scholar
  13. 13.
    Zhao, W., Zhou, S., Sun, Y.: Application of RFID cold chain temperature control research. Comput. Syst. Based Outlier Min. 19(11), 166–170 (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Liu Peng
    • 1
    Email author
  • Li Qiang
    • 1
  • Liu Wen
    • 1
  • Duan Min
    • 1
  • Dai Yue
    • 1
  • Wang Yanrong
    • 1
  1. 1.China National Institute of StandardizationBeijingChina

Personalised recommendations