Advertisement

Airborne Microorganisms in Antarctica: Transport, Survival and Establishment

  • Katie King-Miaow
  • Kevin Lee
  • Teruya Maki
  • Donnabella LaCap-Bugler
  • Stephen David James ArcherEmail author
Chapter
Part of the Springer Polar Sciences book series (SPPS)

Abstract

Microorganisms are a globally ubiquitous component of the atmosphere, of vital importance to climate, human health and environmental processes. Bioaerosols (which include viable fungi, prokaryotes, pollen and viruses as well as biologically derived remnants) are suspected to have a fundamental role in structuring the composition and function of ecosystems globally. Antarctica presents a tractable opportunity to study the dispersal of airborne microorganisms due to its isolation and its simple, microbially dominated ecosystems. Recent advances in technology have begun to shed light on the poorly understood Antarctic aerosphere, with most research focusing on bacteria. This chapter summarises the current knowledge regarding the movement and behaviour of bioaerosols in the global atmosphere, followed by the role that the air plays as a vector of microbes to Antarctica, and an overview of Antarctic bioaerosol research. Survival mechanisms of microbes in the harsh Antarctic terrestrial and atmospheric environments are outlined, followed by a discussion of the potential effects that aerial input to Antarctic ecosystems may have in the face of climate change. Bioaerosols are found to be highly changeable over space and time, with concentrations and compositions influenced by a myriad of variables, particularly climatic factors such as wind speed and temperature. Although studies of Antarctic bioaerosols have confirmed the extremely low biomass predicted in its atmosphere compared with temperate zones, greater biodiversity has been discovered as technology has improved. Multiple lines of evidence indicate that bioaerosols have been globally transported over great distances. While many microbes are believed to survive in the atmosphere as spores, some species may remain metabolically active and could contribute to certain atmospheric processes. The evidence of continual bioaerosol deposition and theorised significance to current ecosystem structuring suggests that as the Antarctic climate changes, deposited microorganisms could drive rapid community shifts. This chapter identifies numerous knowledge gaps in the field, including the variability, environmental drivers, source (where) and extent (how much) of Antarctic airborne microorganisms. Given the predicted importance of airborne transportation to Antarctic ecosystems, it is essential to substantially increase research effort to gain a more comprehensive view of the extreme Antarctic aerosphere.

Keywords

Airborne microorganisms Aerosphere particles Bioaerosol particles Microbial survival mechanisms Propagule bank 

References

  1. Amato, P., Demeer, F., Melaouhi, A., Fontanella, S., Martin-Biesse, A. S., Sancelme, M., Laj, P., & Delort, A. M. (2007). A fate for organic acids, formaldehyde and methanol in cloud water: Their biotransformation by micro-organisms. Atmospheric Chemistry and Physics Discussions, 7(2), 5253–5276.  https://doi.org/10.5194/acpd-7-5253-2007.CrossRefGoogle Scholar
  2. Andreeva, I. S., Borodulin, A. I., Buryak, G. A., Zhukov, V. A., Zykov, S. V., Marchenko, Y. V., Marchenko, V. V., Olkin, S. E., Petrishchenko, V. A., Pyankov, O. V., Reznikova, I. K., Repin, V. E., Sa-Atov, A. S., Sergeev, A. N., Raputa, V., Penenko, V. V., Tsvetova, E. A., Arshinov, M. Y., Belan, B. D., Panchenko, M. V., Ankilov, A. N., Baklanov, A. M., Vlasenko, A. L., Koutsenogil, K. P., Makarov, V. I., & Churkina, T. V. (2002). Biogenic component of atmospheric aerosol in the South of West Siberia. Chemistry for Sustainable Development, 10, 523–537.  https://doi.org/10.1134/S1024856010010148.CrossRefGoogle Scholar
  3. Archer, C. L., & Caldeira, K. (2009). Global assessment of high-altitude wind power. Energies, 2, 307–319.  https://doi.org/10.3390/en20200307.CrossRefGoogle Scholar
  4. Archer, S. D., McDonald, I. R., Herbold, C. W., & Cary, S. C. (2014). Characterisation of bacterioplankton communities in the meltwater ponds of Bratina Island, Victoria Land, Antarctica. FEMS Microbiology Ecology, 89(2), 451–464.  https://doi.org/10.1111/1574-6941.12358.CrossRefPubMedGoogle Scholar
  5. Atkins, C. B., & Dunbar, G. B. (2009). Aeolian sediment flux from sea ice into Southern McMurdo Sound, Antarctica. Global and Planetary Change, 69(3), 133–141.  https://doi.org/10.1016/j.gloplacha.2009.04.006.CrossRefGoogle Scholar
  6. Bahl, J., Lau, M. C. Y., Smith, G. J. D., Vijaykrishna, D., Cary, C. S., Lacap, D. C., Lee, C. K., Papke, T. R., Warren-Rhodes, K. A., Wong, F. K. Y., McKay, C. P., & Pointing, S. B. (2011). Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nature Communications, 2, 163.  https://doi.org/10.1038/ncomms1167.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Barberán, A., Henley, J., Fierer, N., & Casamayor, E. O. (2014). Structure, inter-annual recurrence, and global-scale connectivity of airborne microbial communities. Science of the Total Environment, 487, 187–195.CrossRefGoogle Scholar
  8. Barberán, A., Ladau, J., Leff, J. W., Pollard, K. S., Menninger, H. L., Dunn, R. R., & Fierer, N. (2015). Continental-scale distributions of dust-associated bacteria and fungi. Proceedings of the National Academy of Sciences, 112(18), 5756–5761.  https://doi.org/10.1073/pnas.1420815112.CrossRefGoogle Scholar
  9. Bauer, H., Kasper-Giebl, A., Löflund, M., Giebl, H., Hitzenberger, R., Zibuschka, F., & Puxbaum, H. (2002). The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols. Atmospheric Research, 64(1), 109–119.  https://doi.org/10.1016/S0169-8095(02)00084-4.CrossRefGoogle Scholar
  10. Behzad, H., Gojobori, T., & Mineta, K. (2015). Challenges and opportunities of airborne metagenomics. Genome Biology and Evolution, 7(5), 1216–1226.  https://doi.org/10.1093/gbe/evv064.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bottos, E. M., Woo, A. C., Zawar-Reza, P., Pointing, S. B., & Cary, S. C. (2014). Airborne bacterial populations above desert soils of the McMurdo Dry Valleys, Antarctica. Microbial Ecology, 67(1), 120–128.  https://doi.org/10.1007/s00248-013-0296-y.CrossRefPubMedGoogle Scholar
  12. Bowers, R. M., McLetchie, S., Knight, R., & Journal, F.-N. (2011a). Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. The ISME Journal, 5, 601–612.  https://doi.org/10.1038/ismej.2010.167.CrossRefPubMedGoogle Scholar
  13. Bowers, R. M., Sullivan, A. P., & Costello, E. K. (2011b). Sources of bacteria in outdoor air across cities in the midwestern United States. Applied and Environmental Microbiology, 77(18), 6350–6356.  https://doi.org/10.1128/AEM.05498-11.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bowers, R. M., Clements, N., Emerson, J. B., Wiedinmyer, C., Hannigan, M. P., & Fierer, N. (2013). Seasonal variability in bacterial and fungal diversity of the near-surface atmosphere. Environmental Science & Technology, 47(21), 12097–12106.  https://doi.org/10.1021/es402970s.CrossRefGoogle Scholar
  15. Brodie, E. L., DeSantis, T. Z., & Parker, J. P. M. (2007). Urban aerosols harbor diverse and dynamic bacterial populations. Proceedings of the National Academy of Sciences, 104(1), 299–304.  https://doi.org/10.1073/pnas.0608255104.CrossRefGoogle Scholar
  16. Bulat, S. A. R. (2016). Microbiology of the subglacial Lake Vostok: First results of borehole-frozen lake water analysis and prospects for searching for lake inhabitants. Philosophical Transactions of the Royal Society A, 374, 20140292.  https://doi.org/10.1098/rsta.2014.0292.CrossRefGoogle Scholar
  17. Burrows, S. M., Butler, T., Jöckel, P., Tost, H., Kerkweg, A., Poschl, U., & Lawrence, M. G. (2009a). Bacteria in the global atmosphere–part 2: Modeling of emissions and transport between different ecosystems. Atmospheric Chemistry and Physics, 9, 9281–9297.  https://doi.org/10.5194/acp-9-9281-2009.CrossRefGoogle Scholar
  18. Burrows, S. M., Elbert, W., Lawrence, M. G., & Poschl, U. (2009b). Bacteria in the global atmosphere – part 1: Review and synthesis of literature data for different ecosystems. Atmospheric Chemistry and Physics, 9, 9263–9280.  https://doi.org/10.5194/acp-9-9263-2009.CrossRefGoogle Scholar
  19. Cano, R. J., & Borucki, M. K. (1995). Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. Science, 268(5213), 1060–1064.  https://doi.org/10.1126/science.7538699.CrossRefPubMedGoogle Scholar
  20. Cary, C. S., McDonald, I. R., Barrett, J. E., & Cowan, D. A. (2010). On the rocks: The microbiology of Antarctic Dry Valley soils. Nature Reviews Microbiology, 8(2), 129–138.  https://doi.org/10.1038/nrmicro2281.CrossRefPubMedGoogle Scholar
  21. Chen, M., Jin, L., Sun, Z., Lu, J., Wang, Q., & Hu, Q. (2001). Concentration and flux of bioaerosol and environmental factors. Progress in Natural Science, 11(9), 686–687.Google Scholar
  22. Cho, B. C., & Azam, F. (1990). Biogeochemical significance of bacterial biomass in the ocean’s euphotic zone. Marine Ecology Progress Series, 63(2/3), 253–259.  https://doi.org/10.3354/meps063253.CrossRefGoogle Scholar
  23. Chong, C. W., Pearce, D. A., & Convey, P. (2015). Emerging spatial patterns in Antarctic prokaryotes. Frontiers in Microbiology, 6, 1058.  https://doi.org/10.3389/fmicb.2015.01058.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Chown, S. L., Huiskes, A. H. L., Gremmen, N. J. M., Lee, J. E., Terauds, A., Crosbie, K., Frenot, Y., Hughes, K. A., Imura, S., Kiefer, K., Lebouvier, M., Raymond, B., Tsujimoto, M., Ware, C., de Vijver, B., & Bergstrom, D. (2012). Continent-wide risk assessment for the establishment of nonindigenous species in Antarctica. Proceedings of the National Academy of Sciences, 109(13), 4938–4943.  https://doi.org/10.1073/pnas.1119787109.CrossRefGoogle Scholar
  25. Convey, P. (2006). Antarctic climate change and its influence on terrestrial ecosystems. Dordrecht: Springer.CrossRefGoogle Scholar
  26. Convey, P., & Wynn-Williams, D. D. (2002). Antarctic soil nematode response to artificial climate amelioration. European Journal of Soil Biology, 38, 255–259.  https://doi.org/10.1016/S1164-5563(02)01155-X.CrossRefGoogle Scholar
  27. Cowan, D. A., Chown, S. L., Convey, P., Tuffin, M., Hughes, K., Pointing, S., & Vincent, W. F. (2011). Non-indigenous microorganisms in the Antarctic: Assessing the risks. Trends in Microbiology, 19(11), 540–548.  https://doi.org/10.1016/j.tim.2011.07.008.CrossRefPubMedGoogle Scholar
  28. Crawford, I., Gallagher, M. W., Bower, K. N., Choularton, T. W., Flynn, M. J., Ruske, S., Listowski, C., Brough, N., Lachlan-Cope, T., Fleming, Z. L., Foot, V. E., & Stanley, W. R. (2017). Real-time detection of airborne fluorescent bioparticles in Antarctica. Atmospheric Chemistry and Physics, 17(23), 14291–14307.  https://doi.org/10.5194/acp-17-14291-2017.CrossRefGoogle Scholar
  29. DeLeon-Rodriguez, N., Lathem, T. L., Rodriguez-R, L. M., Barazesh, J. M., Anderson, B. E., Beyersdorf, A. J., Ziemba, L. D., Bergin, M., Nenes, A., & Konstantinidis, K. T. (2013). Microbiome of the upper troposphere: Species composition and prevalence, effects of tropical storms, and atmospheric implications. Proceedings of the National Academy of Sciences, 110(7), 2575–2580.  https://doi.org/10.1073/pnas.1212089110.CrossRefGoogle Scholar
  30. Diallo, M., Ploeger, F., Konopka, P., Birner, T., Müller, R., Riese, M., Garny, H., Legras, B., Ray, E., Berthet, G., & Jegou, F. (2017). Significant contributions of volcanic aerosols to decadal changes in the stratospheric circulation. Geophysical Research Letters, 44(20), 10,780–10,791.  https://doi.org/10.1002/2017GL074662.CrossRefGoogle Scholar
  31. Dimmick, R. L., & Wolochow, H. (1979). Evidence for more than one division of bacteria within airborne particles. Applied and Environmental Microbiology, 38(4), 642–643.PubMedPubMedCentralGoogle Scholar
  32. Dimmick, R. L., Straat, P. A., Wolochow, H., & Levin, G. V. (1975). Evidence for metabolic activity of airborne bacteria. Journal of Aerosol Science, 6, 387–393.CrossRefGoogle Scholar
  33. Dybwad, M., Skogan, G., & Blatny, J. (2014). Comparative testing and evaluation of nine different air samplers: End-to-end sampling efficiencies as specific performance measurements for bioaerosol applications. Aerosol Science and Technology, 48(3), 282–295.  https://doi.org/10.1080/02786826.2013.871501.CrossRefGoogle Scholar
  34. Fierer, N., Liu, Z., & Rodríguez-Hernández, M. (2008). Short-term temporal variability in airborne bacterial and fungal populations. Applied and Environmental Microbiology, 74(1), 200–207.  https://doi.org/10.1128/AEM.01467-07.CrossRefPubMedGoogle Scholar
  35. Fowbert, J. A., & Smith, R. I. L. (1994). Rapid population increases in native vascular plants in the argentine islands, Antarctic Peninsula. Arctic and Alpine Research, 26(3), 290–296.  https://doi.org/10.1080/00040851.1994.12003068.CrossRefGoogle Scholar
  36. Fox-Skelly J (2017). There are diseases in the ice and they are waking up. http://www.bbc.com/earth/story/20170504-there-are-diseases-hidden-in-ice-and-they-are-waking-up. Accessed 1/7/18 2018.
  37. Fripiat, F., Meiners, K. M., Vancoppenolle, M., Papadimitriou, S., Thomas, D. N., Ackley, S. F., Arrigo, K. R., Carnat, G., Cozzi, S., & Delille, B. (2017). Macro-nutrient concentrations in Antarctic pack ice: Overall patterns and overlooked processes. Elementa: Science of the Anthropocene, 5, 13.  https://doi.org/10.1525/elementa.217.CrossRefGoogle Scholar
  38. Fulton, J. D. (1966a). Microorganisms of the upper atmosphere. V. Relationship between frontal activity and the micropopulation at altitude. Applied Microbiology, 14(2), 245–250.PubMedPubMedCentralGoogle Scholar
  39. Fulton, J. D. (1966b). Microorganisms of the upper atmosphere: III. Relationship between altitude and micropopulation. Applied Microbiology, 14(2), 237–240.PubMedPubMedCentralGoogle Scholar
  40. Fulton, J. D., & Mitchell, R. B. (1966). Microorganisms of the upper atmosphere. II. Microorganisms in two types of air masses at 690 meters over a city. Applied Microbiology, 14(2), 232–236.PubMedPubMedCentralGoogle Scholar
  41. Grantham, N. S., Reich, B. J., Pacifici, K., Laber, E. B., Menninger, H. L., Henley, J. B., Barberán, A., Leff, J. W., Fierer, N., & Dunn, R. R. (2015). Fungi identify the geographic origin of dust samples. PLoS One, 10(4), e0122605.  https://doi.org/10.1371/journal.pone.0122605.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Gregory PH (1961). The microbiology of the atmosphere.Google Scholar
  43. Griffin, D. W. (2004). Terrestrial microorganisms at an altitude of 20,000 m in Earth’s atmosphere. Aerobiologia, 20, 135–140.  https://doi.org/10.1023/B:AERO.0000032948.84077.12.CrossRefGoogle Scholar
  44. Haig, C. W., Mackay, W. G., Walker, J. T., & Williams, C. (2016). Bioaerosol sampling: Sampling mechanisms, bioefficiency and field studies. Journal of Hospital Infection, 93(3), 242–255.  https://doi.org/10.1016/j.jhin.2016.03.017.CrossRefPubMedGoogle Scholar
  45. Hara, K., & Zhang, D. (2012). Bacterial abundance and viability in long-range transported dust. Atmospheric Environment, 47, 20–25.  https://doi.org/10.1016/j.atmosenv.2011.11.050.CrossRefGoogle Scholar
  46. Harrison, R. M., Jones, A. M., Biggins, P. D. E., Pomeroy, N., Cox, C. S., Kidd, S. P., Hobman, J. L., Brown, N. L., & Beswick, A. (2005). Climate factors influencing bacterial count in background air samples. International Journal of Biometeorology, 49(3), 167–178.  https://doi.org/10.1007/s00484-004-0225-3.CrossRefPubMedGoogle Scholar
  47. Herbold, C. W., Lee, C. K., McDonald, I. R., & Cary, C. S. (2014). Evidence of global-scale aeolian dispersal and endemism in isolated geothermal microbial communities of Antarctica. Nature Communications, 5, 3875.  https://doi.org/10.1038/ncomms4875.CrossRefPubMedGoogle Scholar
  48. Horneck, G. (1993). Responses of Bacillus subtilis spores to space environment: Results from experiments in space. Origins of Life and Evolution of the Biosphere : The Journal of the International Society for the Study of the Origin of Life, 23(1), 37–52.  https://doi.org/10.1007/BF01581989.CrossRefGoogle Scholar
  49. Horowitz, N., Cameron, R. E., & Hubbard, J. S. (1972). Microbiology of the dry valleys of Antarctica. Science, 176(4032), 242–245.CrossRefGoogle Scholar
  50. Huffman, J. A., Treutlein, B., & Poschl, U. (2010). Fluorescent biological aerosol particle concentrations and size distributions measured with an ultraviolet aerodynamic particle sizer (UV-APS) in Central Europe. Atmospheric Chemistry and Physics, 10, 3215–3233.  https://doi.org/10.5194/acp-10-3215-2010.CrossRefGoogle Scholar
  51. Hughes, K. A. (2003). Aerial dispersal and survival of sewage-derived faecal coliforms in Antarctica. Atmospheric Environment, 37(22), 3147–3155.  https://doi.org/10.1016/S1352-2310(03)00207-3.CrossRefGoogle Scholar
  52. Hughes, K. A., McCartney, H. A., Lachlan-Cope, T. A., & Pearce, D. A. (2004). A preliminary study of airborne microbial biodiversity over Peninsular Antarctica. Cellular and Molecular Biology (Noisy-le-Grand, France), 50(5), 537–542.Google Scholar
  53. Imshenetsky, A. A., Lysenko, S. V., & Kazakov, G. A. (1978). Upper boundary of the biosphere. Applied and Environmental Microbiology, 35(1), 1–5.PubMedPubMedCentralGoogle Scholar
  54. Kaidor (2013). Earth global circulation. Inkscape. Wikipedia.Google Scholar
  55. Karl, D. M., Bird, D. F., Björkman, K., Houlihan, T., Shackelford, R., & Tupas, L. (1999). Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science, 286(5447), 2144–2147.  https://doi.org/10.1126/science.286.5447.2144.CrossRefPubMedGoogle Scholar
  56. Kellogg, C. A., & Griffin, D. W. (2006). Aerobiology and the global transport of desert dust. Trends in Ecology & Evolution, 21(11), 638–644.  https://doi.org/10.1016/j.tree.2006.07.004.CrossRefGoogle Scholar
  57. Kellogg, C. A., Griffin, D. W., Garrison, V. H., Peak, K. K., Royall, N., Smith, R. R., & Shinn, E. A. (2004). Characterization of aerosolized bacteria and fungi from desert dust events in Mali, West Africa. Aerobiologia, 20(2), 99–110.  https://doi.org/10.1023/B:AERO.0000032947.88335.bb.CrossRefGoogle Scholar
  58. Kennedy, A. D. (1994). Simulated climate change: A field manipulation study of polar microarthropod community response to global warming. Ecography, 17(2), 131–140.  https://doi.org/10.1111/j.1600-0587.1994.tb00085.x.CrossRefGoogle Scholar
  59. Kennicutt, M. C., Chown, S. L., Cassano, J. J., Liggett, D., Massom, R., Peck, L. S., Rintoul, S. R., Storey, J. W. V., Vaughan, D. G., Wilson, T. J., & Sutherland, W. J. (2014). Polar research: Six priorities for Antarctic science. Nature News, 512(7512), 23.  https://doi.org/10.1038/512023a.CrossRefGoogle Scholar
  60. Kobayashi, F., Maki, T., Kakikawa, M., Noda, T., Mitamura, H., Takahashi, A., Imura, S., & Iwasaka, Y. (2016). Atmospheric bioaerosols originating from Adélie penguins (Pygoscelis adeliae): Ecological observations of airborne bacteria at Hukuro Cove, Langhovde, Antarctica. Polar Science, 10, 71.  https://doi.org/10.1016/j.polar.2015.12.002.CrossRefGoogle Scholar
  61. Kussell, E., Kishony, R., Balaban, N. Q., & Leibler, S. (2005). Bacterial persistence: A model of survival in changing environments. Genetics, 169, 1807–1814.  https://doi.org/10.1534/genetics.104.035352.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Laybourn-Parry, J. (2002). Survival mechanisms in Antarctic lakes. Philosophical Transactions of the Royal Society B: Biological Sciences, 357, 863–869.  https://doi.org/10.1098/rstb.2002.1075.CrossRefGoogle Scholar
  63. Lee, C. K., Barbier, B. A. A., Bottos, E. M., McDonald, I. R., & Cary, S. C. (2012). The Inter-Valley soil comparative survey: The ecology of Dry Valley edaphic microbial communities. The ISME Journal, 6(5), 1046–1057.  https://doi.org/10.1038/ismej.2011.170.CrossRefPubMedGoogle Scholar
  64. Lelieveld, J., & Heintzenberg, J. (1992). Sulfate cooling effect on climate through in-cloud oxidation of anthropogenic SO2. Science, 258(5079), 117–120.  https://doi.org/10.1126/science.258.5079.117.CrossRefPubMedGoogle Scholar
  65. Lennon, J. T., & Jones, S. E. (2011). Microbial seed banks: The ecological and evolutionary implications of dormancy. Nature Reviews Microbiology, 9(2), 119–130.  https://doi.org/10.1038/nrmicro2504.CrossRefPubMedGoogle Scholar
  66. Lighthart, B., & Stetzenbach, L. D. (1994). Distribution of microbial bioaerosol. In B. Lighthart & A. J. Mohr (Eds.), Atmospheric microbial aerosols: Theory and applications (pp. 68–98). Boston: Springer.  https://doi.org/10.1007/978-1-4684-6438-2_4.CrossRefGoogle Scholar
  67. Luhung, I., Wu, Y., Ng, C., Miller, D., Cao, B., & Chang, V. (2015). Protocol improvements for low concentration DNA-based bioaerosol sampling and analysis. PLoS One, 10(11), e0141158.  https://doi.org/10.1371/journal.pone.0141158.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Mackintosh L (2001). How cold is the Antarctic? NIWA. https://www.niwa.co.nz/education-and-training/schools/resources/climate/antarctic. Accessed 1/7/2018 2018.
  69. Makarova, K. S., Aravind, L., Wolf, Y. I., Tatusov, R. L., Minton, K. W., Koonin, E. V., & Daly, M. J. (2001). Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiology and Molecular Biology Reviews, 65(1), 44–79.  https://doi.org/10.1128/MMBR.65.1.44-79.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Maki, T., Susuki, S., Kobayashi, F., Kakikawa, M., Yamada, M., Higashi, T., Chen, B., Shi, G., Hong, C., & Tobo, Y. (2008). Phylogenetic diversity and vertical distribution of a halobacterial community in the atmosphere of an Asian dust (KOSA) source region, Dunhuang City. Air Quality, Atmosphere & Health, 1(2), 81–89.  https://doi.org/10.1007/s11869-008-0016-9.CrossRefGoogle Scholar
  71. Maki, T., Aoki, K., Kobayashi, F., Kakikawa, M., Tobo, Y., Matsuki, A., Hasegawa, H., & Iwasaka, Y. (2011). Characterization of halotolerant and oligotrophic bacterial communities in Asian desert dust (KOSA) bioaerosol accumulated in layers of snow on Mount Tateyama Central Japan. Aerobiologia, 27, 277–290.  https://doi.org/10.1007/s10453-011-9196-0.CrossRefGoogle Scholar
  72. Maki, T., Hara, K., Iwata, A., Lee, K. C., Kawai, K., Kai, K., Kobayashi, F., Pointing, S. B., Archer, S., Hasegawa, H., & Iwasaka, Y. (2017). Variations in airborne bacterial communities at high altitudes over the Noto Peninsula (Japan) in response to Asian dust events. Atmospheric Chemistry and Physics, 17(19), 11877–11897.  https://doi.org/10.5194/acp-17-11877-2017.CrossRefGoogle Scholar
  73. Marshall, W. A. (1996a). Aerial dispersal of lichen soredia in the maritime Antarctic. New Phytologist, 134(3), 523–530.  https://doi.org/10.1111/j.1469-8137.1996.tb04370.x.CrossRefGoogle Scholar
  74. Marshall, W. A. (1996b). Biological particles over Antarctica. Nature, 383(6602), 680–680.  https://doi.org/10.1038/383680a0.CrossRefGoogle Scholar
  75. Marshall, W. A. (1997). Seasonality in antarctic airborne fungal spores. Applied and Environmental Microbiology, 63(6), 2240–2245.PubMedPubMedCentralGoogle Scholar
  76. Matsuki, A., Iwasaka, Y., & Osada, K. (2003). Seasonal dependence of the long-range transport and vertical distribution of free tropospheric aerosols over East Asia: On the basis of aircraft and lidar measurements and isentropic trajectory analysis. Journal of Geophysical Research, 108(D23), 8663.  https://doi.org/10.1029/2002JD003266.CrossRefGoogle Scholar
  77. Matthias-Maser, S., Obolkin, V., Khodzer, T., & Jaenicke, R. (2000). Seasonal variation of primary biological aerosol particles in the remote continental region of Lake Baikal/Siberia. Atmospheric Environment, 34(22), 3805–3811.  https://doi.org/10.1016/S1352-2310(00)00139-4.CrossRefGoogle Scholar
  78. Miller, L. M., Gans, F., & Kleidon, A. (2011). Jet stream wind power as a renewable energy resource: Little power, big impacts. Earth System Dynamics, 2(2), 201–212.  https://doi.org/10.5194/esd-2-201-2011.CrossRefGoogle Scholar
  79. Mohr. (2007). Manual of environmental microbiology (3rd ed.). Washington, DC: ASM Press.  https://doi.org/10.1128/9781555815882.CrossRefGoogle Scholar
  80. Mroz, E., Mohammed, A., Cappis, J. H., Guthals, P. R., Mason, A. S., & Rokop, D. J. (1989). Antarctic atmospheric tracer experiments. Journal of Geophysical Research: Atmospheres, 94(D6), 8577–8583.  https://doi.org/10.1029/JD094iD06p08577.CrossRefGoogle Scholar
  81. NASA (1962). US standard atmosphere 1962. NASA.Google Scholar
  82. Nguyen, T. M. N., Ilef, D., Jarraud, S., Rouil, L., & Desenclos, J.-C. (2006). A community-wide outbreak of legionnaires disease linked to industrial cooling towers—how far can contaminated aerosols spread? Journal of Infectious Diseases, 193, 102–111.  https://doi.org/10.1093/oxfordjournals.aje.a112917.CrossRefPubMedGoogle Scholar
  83. Niklas, K. J. (1985). The aerodynamics of wind pollination. The Botanical Review, 51(3), 328.  https://doi.org/10.1007/bf02861079.CrossRefGoogle Scholar
  84. Nkem, J. N., Wall, D. H., Virginia, R. A., Barrett, J. E., Broos, E. J., Porazinska, D. L., & Adams, B. J. (2006). Wind dispersal of soil invertebrates in the McMurdo Dry Valleys, Antarctica. Polar Biology, 29(4), 346–352.  https://doi.org/10.1007/s00300-005-0061-x.CrossRefGoogle Scholar
  85. Nuwer R (2014). The last place on Earth without life. http://www.bbc.com/future/story/20140303-last-place-on-earth-without-life. Accessed 1/7/2018 2018.
  86. O’Connell S (2006) How Krakatoa made the biggest bang. https://www.independent.co.uk/news/science/how-krakatoa-made-the-biggest-bang-5336165.html. Accessed 1/7/2018 2018.
  87. O'Malley, M. A. (2008). ‘Everything is everywhere: But the environment selects’: Ubiquitous distribution and ecological determinism in microbial biogeography. Studies in History and Philosophy of Biological and Biomedical Sciences, 39(3), 314–325.  https://doi.org/10.1016/j.shpsc.2008.06.005.CrossRefPubMedGoogle Scholar
  88. Parish, T. R., & Cassano, J. J. (2003). The role of katabatic winds on the Antarctic surface wind regime. Monthly Weather Review, 131(2), 317–333.  https://doi.org/10.1175/1520-0493(2003)131<0317:Trokwo>2.0.Co;2.CrossRefGoogle Scholar
  89. Parks, D. H., Rinke, C., Chuvochina, M., Chaumeil, P.-A., Woodcroft, B. J., Evans, P. N., Hugenholtz, P., & Tyson, G. W. (2017). Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nature Microbiology, 2(11), 1533–1542.  https://doi.org/10.1038/s41564-017-0012-7.CrossRefPubMedGoogle Scholar
  90. Pearce, D. A., Bridge, P. D., Hughes, K. A., Sattler, B., Psenner, R., & Russell, N. J. (2009). Microorganisms in the atmosphere over Antarctica. FEMS Microbiology Ecology, 69(2), 143–157.  https://doi.org/10.1111/j.1574-6941.2009.00706.x.CrossRefPubMedGoogle Scholar
  91. Pearce, D. A., Hughes, K. A., Lachlan-Cope, T., Harangozo, S. A., & Jones, A. E. (2010). Biodiversity of air-borne microorganisms at Halley Station, Antarctica. Extremophiles : Life Under Extreme Conditions, 14(2), 145–159.  https://doi.org/10.1007/s00792-009-0293-8.CrossRefGoogle Scholar
  92. Pearce, D. A., Alekhina, I. A., Terauds, A., Wilmotte, A., Quesada, A., Edwards, A., Dommergue, A., Sattler, B., Adams, B. J., Magalhães, C., Chu, W.-L., Lau, M. C. Y., Cary, C., Smith, D. J., Wall, D. H., Eguren, G., Matcher, G., Bradley, J. A., de Vera, J.-P., Elster, J., Hughes, K. A., Cuthbertson, L., Benning, L. G., Gunde-Cimerman, N., Convey, P., Hong, S., Pointing, S. B., Pellizari, V. H., & Vincent, W. F. (2016). Aerobiology over Antarctica – a new initiative for atmospheric ecology. Frontiers in Microbiology, 7, 16.  https://doi.org/10.3389/fmicb.2016.00016.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Pepper, I., Gerber, C., Gentry, T. (Eds.) (2015). Environmental microbiology (3rd edn).  https://doi.org/10.1016/B978-0-12-394626-3.00005-3.CrossRefGoogle Scholar
  94. Pointing, S. B., Büdel, B., Convey, P., Gillman, L. N., Körner, C., Leuzinger, S., & Vincent, W. F. (2015). Biogeography of photoautotrophs in the high polar biome. Frontiers in Plant Science, 6, 692.  https://doi.org/10.3389/fpls.2015.00692.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Prospero, J. M. (1999). Assessing the impact of advected African dust on air quality and health in the eastern United States. Human and Ecological Risk Assessment: An International Journal, 5(3), 471–479.  https://doi.org/10.1080/10807039.1999.10518872.CrossRefGoogle Scholar
  96. Reche, I., D’Orta, G., Mladenov, N., Winget, D. M., & Suttle, C. A. (2018). Deposition rates of viruses and bacteria above the atmospheric boundary layer. The ISME Journal, 12(4), 1154–1162.  https://doi.org/10.1038/s41396-017-0042-4.CrossRefPubMedGoogle Scholar
  97. Rettberg, P., Eschweiler, U., Strauch, K., Reitz, G., Horneck, G., Wänke, H., Brack, A., & Barbier, B. (2002). Survival of microorganisms in space protected by meteorite material: Results of the experiment EXOBIOLOGIE of the PERSEUS mission. Advances in Space Research, 30(6), 1539–1545.  https://doi.org/10.1016/S0273-1177(02)00369-1.CrossRefPubMedGoogle Scholar
  98. Rotach, M. W., Gohm, A., Lang, M. N., Leukauf, D., Stiperski, I., & Wagner, J. S. (2015). On the vertical exchange of heat, mass, and momentum over complex, mountainous terrain. Frontiers in Earth Science, 3, 76.  https://doi.org/10.3389/feart.2015.00076.CrossRefGoogle Scholar
  99. Rothschild, L. J., & Mancinelli, R. L. (2001). Life in extreme environments. Nature, 409, 1092–1101.  https://doi.org/10.1038/35059215.CrossRefPubMedGoogle Scholar
  100. Sattler, B., Puxbaum, H., & Psenner, R. (2001). Bacterial growth in supercooled cloud droplets. Geophysical Research Letters, 28(2), 239–242.  https://doi.org/10.1029/2000GL011684.CrossRefGoogle Scholar
  101. Shaffer, B. T., & Lighthart, B. (1997). Survey of culturable airborne bacteria at four diverse locations in Oregon: Urban, rural, forest, and coastal. Microbial Ecology, 34, 167–177.  https://doi.org/10.1007/s002489900046.CrossRefPubMedGoogle Scholar
  102. Sinha, R. P., & Häder, D.-P. (2002). UV-induced DNA damage and repair: A review. Photochemical & Photobiological Sciences, 1(4), 225–236.  https://doi.org/10.1039/B201230H.CrossRefGoogle Scholar
  103. Sinha, R. K., & Krishnan, K. P. (2013). Novel opportunity for understanding origin and evolution of life: Perspectives on the exploration of subglacial environment of Lake Vostok, Antarctica. Annals of Microbiology, 63(2), 409–415.  https://doi.org/10.1007/s13213-012-0525-5.CrossRefGoogle Scholar
  104. Smith, L. R. I. (1991). Exotic sporomorpha as indicators of potential immigrant colonists in Antarctica. Grana, 30(2), 313–324.  https://doi.org/10.1080/00173139109431986.CrossRefGoogle Scholar
  105. Smith, R. I. L. (1994). Vascular plants as bioindicators of regional warming in Antarctica. Oecologia, 99(3), 322–328.  https://doi.org/10.1007/bf00627745.CrossRefPubMedPubMedCentralGoogle Scholar
  106. Smith, D. J., Griffin, D. W., McPeters, R. D., Ward, P. D., & Schuerger, A. C. (2011). Microbial survival in the stratosphere and implications for global dispersal. Aerobiologia, 27(4), 319–332.  https://doi.org/10.1007/s10453-011-9203-5.CrossRefGoogle Scholar
  107. Sokol, E. R., Herbold, C. W., Lee, C. K., Cary, S. C., & Barrett, J. E. (2013). Local and regional influences over soil microbial metacommunities in the Transantarctic Mountains. Ecosphere, 4(11), 136.  https://doi.org/10.1890/ES13-00136.1.CrossRefGoogle Scholar
  108. Sommaruga, R., & Casamayor, E. O. (2009). Bacterial ‘cosmopolitanism’ and importance of local environmental factors for community composition in remote high-altitude lakes. Freshwater Biology, 54, 944–1005.  https://doi.org/10.1111/j.1365-2427.2008.02146.x.CrossRefGoogle Scholar
  109. Tong, Y., & Lighthart, B. (2000). The annual bacterial particle concentration and size distribution in the ambient atmosphere in a rural area of the Willamette Valley, Oregon. Aerosol Science & Technology, 32(5), 393–403.  https://doi.org/10.1080/027868200303533.CrossRefGoogle Scholar
  110. Turner, J., Colwell, S. R., Marshall, G. J., Lachlan-Cope, T. A., Carleton, A. M., Jones, P. D., Lagun, V., Reid, P. A., & Iagovkina, S. (2005). Antarctic climate change during the last 50 years. International Journal of Climatology, 25(3), 279–294.  https://doi.org/10.1002/joc.1130.CrossRefGoogle Scholar
  111. Vaïtilingom, M., & Deguillaume, L. (2013). Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds. Proceedings of the National Academy of Sciences, 110(2), 59–564.  https://doi.org/10.1073/pnas.1205743110.CrossRefGoogle Scholar
  112. Vincent, W. F. (2000). Evolutionary origins of Antarctic microbiota: Invasion, selection and endemism. Antarctic Science, 12(3), 374–385.  https://doi.org/10.1017/S0954102000000420.CrossRefGoogle Scholar
  113. Wainwright, M., Wickramasinghe, N. C., Narlikar, J. V., & Rajaratnam, P. (2003). Microorganisms cultured from stratospheric air samples obtained at 41 km. FEMS Microbiology Letters, 218, 161–165.  https://doi.org/10.1111/j.1574-6968.2003.tb11513.x.CrossRefPubMedGoogle Scholar
  114. Wilson, S. L., & Walker, V. K. (2010). Selection of low temperature resistance in bacteria and potential applications. Environmental Technology, 31(8–9), 943–956.  https://doi.org/10.1080/09593331003782417.CrossRefPubMedGoogle Scholar
  115. Womack, A. M., Bohannan, B. J. M., & Green, J. L. (2010). Biodiversity and biogeography of the atmosphere. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1558), 3645–3653.  https://doi.org/10.1098/rstb.2010.0283.CrossRefGoogle Scholar
  116. Woo, A. C., Brar, M. S., Chan, Y., Lau, M., Leung, F., Scott, J. A., Vrijmoed, L., Zawar-Reza, P., & Pointing, S. B. (2013). Temporal variation in airborne microbial populations and microbially-derived allergens in a tropical urban landscape. Atmospheric Environment, 74, 291–300.  https://doi.org/10.1016/j.atmosenv.2013.03.047.CrossRefGoogle Scholar
  117. Wood, S. A., Rueckert, A., Cowan, D. A., & Cary, C. S. (2008). Sources of edaphic cyanobacterial diversity in the Dry Valleys of Eastern Antarctica. The ISME Journal, 2(3), 308–320.  https://doi.org/10.1038/ismej.2007.104.CrossRefPubMedGoogle Scholar
  118. Wynn-Williams, D. D. (1991). Aerobiology and colonization in Antarctica — the BIOTAS Programme. Grana, 30(2), 380–393.  https://doi.org/10.1080/00173139109431994.CrossRefGoogle Scholar
  119. Wynn-Williams, D. D. (1996). Antarctic microbial diversity: The basis of polar ecosystem processes. Biodiversity and Conservation, 5(11), 1271–1293.  https://doi.org/10.1007/BF00051979.CrossRefGoogle Scholar
  120. Yoo, K., Lee, T., Choi, E., Yang, J., Shukla, S., Hwang, S.-I., & Park, J. (2016). Approach of molecular methods for the detection and monitoring of microbial communities in bioaerosols: A review. Journal of Environmental Sciences.  https://doi.org/10.1016/j.jes.2016.07.002.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Katie King-Miaow
    • 1
  • Kevin Lee
    • 1
  • Teruya Maki
    • 2
  • Donnabella LaCap-Bugler
    • 1
  • Stephen David James Archer
    • 1
    • 3
    Email author
  1. 1.Institute for Applied Ecology New ZealandAuckland University of TechnologyAucklandNew Zealand
  2. 2.Department of Chemical EngineeringKanazawa UniversityKanazawaJapan
  3. 3.Yale-NUS CollegeNational University of SingaporeSingaporeSingapore

Personalised recommendations