Diversity and Ecological Roles of Prokaryotes in the Changing Antarctic Marine Environment

  • Angelina Lo GiudiceEmail author
  • Maurizio Azzaro
Part of the Springer Polar Sciences book series (SPPS)


The Antarctic marine ecosystem is particularly vulnerable to climate change, with further exacerbation mainly deriving from the potential impacts of human activities at research stations. Anthropogenic changes in Antarctica pose a serious questioning about the ability of microbial communities to respond to environmental stresses in this extreme and fragile environment. Establishing the base-lines of Antarctic prokaryotic population composition and ecophysiological activities becomes essential to monitor the functioning of ecosystems and the effects of climate change. In this chapter, we present an overview of the prokaryotic communities in the Antarctic marine environment and the potential/current influence of climate change, mainly related to rising temperatures, on their composition and activities. A focus will be done on the role of prokaryotes in the changing polar carbon cycle in seawater, sea-ice and sediments.


Marine ecosystem Carbon cycling Chemoheterotrophs Organic matter sink Climate change 


  1. Abele, D., Vazquez, S., Buma, A. G. J., Hernandez, E., Quiroga, C., Held, C., Frickenhaus, S., Harms, L., Lopez, J. L., Helmke, E., & Mac Cormack, W. P. (2017). Pelagic and benthic communities of the Antarctic ecosystem of Potter Cove: Genomics and ecological implications. Marine Genomics, 33, 1–11.PubMedCrossRefGoogle Scholar
  2. Alder, V., Azzaro, M., Hucke-Gaete, R., Mosetti, R., Orgeira, J. L., Quartino, L., Rey, A. R., Schejter, L., Secchione, M., Marschoff, E. R. (2017). Southern Ocean. In First Global Marine Assessment, Chapter: 36H, Oceans and Law of the Sea, United Nations (p. 41).Google Scholar
  3. Amano-Sato, C., Akiyama, S., Uchida, M., Shimada, K., & Utsumi, M. (2013). Archaeal distribution and abundance in water masses of the Arctic Ocean, Pacific sector. Aquatic Microbial Ecology, 69, 101–112.CrossRefGoogle Scholar
  4. Arrigo, K. R. (2005). Marine microorganisms and global nutrient cycles. Nature, 437, 349–355.PubMedCrossRefGoogle Scholar
  5. Arrigo, K. R., Worthen, D. L., Lizotte, M. P., Dixon, P., & Dieckmann, G. (1997). Primary production in Antarctic sea ice. Science, 276, 394–397.PubMedCrossRefGoogle Scholar
  6. Arrigo, K. R., van Dijken, G. L., & Bushinsky, S. (2008). Primary production in the Southern Ocean, 1997–2006. Journal of Geophysical Research, 113, C08004.CrossRefGoogle Scholar
  7. Atkinson, A., Ward, P., Hunt, B. P. V., Pakhomov, E. A., & Hosie, G. W. (2012). An overview of southern ocean zooplankton data: Abundance, biomass, feeding and functional relationships. CCAMLR Science, 19, 171–218.Google Scholar
  8. Azam, F., Smith, D. C., & Hollibaugh, J. T. (1991). The role of the microbial loop in Antarctic pelagic ecosystems. Polar Research, 10, 239–244.CrossRefGoogle Scholar
  9. Azzaro, M., La Ferla, R., & Azzaro, F. (2006). Microbial respiration in the aphotic zone of the Ross Sea (Antarctica). Marine Chemistry, 99, 199–209.CrossRefGoogle Scholar
  10. Baldi, F., Marchetto, D., Pini, F., Fani, R., Michaud, L., Lo Giudice, A., Berto, D., & Giani, M. (2010). Biochemical and microbial features of shallow marine sediments along the Terra Nova Bay (Ross Sea, Antarctica). Continental Shelf Research, 30, 1614–1625.CrossRefGoogle Scholar
  11. Béja, O., Koonin, E. V., Aravind, L., Taylor, L. T., Seitz, H., Stein, J. L., Bensen, D. C., Feldman, R. A., Swanson, R. V., & Delong, E. F. (2002). Comparative genomic analysis of archaeal genotypic variants in a single population and in two different oceanic provinces. Applied and Environmental Microbiology, 68, 335–345.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bowman, J. S. (2015). The relationship between sea ice bacterial community structure and biogeochemistry: A synthesis of current knowledge and known unknowns. Elementary Science Anthology, 3, 72.Google Scholar
  13. Bowman, J. P., & McCuaig, R. D. (2003). Biodiversity, community structural shifts, and biogeography on prokaryotes within Antarctic continental shelf sediment. Applied and Environmental Microbiology, 69, 2463–2483.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bowman, J. P., & Nichols, D. S. (2005). Novel members of the family Flavobacteriaceae from Antarctic maritime habitats including Subsaximicrobium wynnwilliamsii gen. nov., sp. nov., Subsaximicrobium saxinquilinus sp. nov., Subsaxibacter broadyi gen. nov., sp. nov., Lacinutrix copepodicola gen. nov., sp. nov., and novel species of the genera Bizionia, Gelidibacter and Gillisia. International Journal of Systematic and Evolutionary Microbiology, 55, 1471–1486.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bowman, J. P., McCammon, S. A., Brown, M. V., Nichols, D. S., & McMeekin, T. A. (1997). Diversity and association of psychrophilic bacteria in Antarctic sea ice. Applied and Environmental Microbiology, 63, 3068–3078.PubMedPubMedCentralGoogle Scholar
  16. Bowman, J. P., McCammon, S. A., Gibson, J. A. E., Robertson, L., & Nichols, P. D. (2003). Prokaryotic metabolic activity and community structure in Antarctic continental shelf sediments. Applied and Environmental Microbiology, 69, 2448–2462.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Brinkmeyer, R., Knittel, K., Jurgens, J., Weyland, H., Amann, R., & Helmke, E. (2003). Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Applied and Environmental Microbiology, 69, 6610–6619.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Brown, M. V., & Bowman, J. P. (2001). A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiology Ecology, 35, 267–275.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bruni, V., Gugliandolo, C., Maugeri, T., & Allegra, A. (1999). Psychrotrophic bacteria from a coastal station in the Ross Sea (Terra Nova Bay, Antarctica). Microbiologica, 22, 357–363.PubMedPubMedCentralGoogle Scholar
  20. Carr, S. A., Vogel, S. W., Dunbar, R. B., Brandes, J., Spea, J. R., Levy, R., Naish, T. R., Powell, R. D., Wakeham, S. G., & Mandernack, K. W. (2013). Bacterial abundance and composition in marine sediments beneath the Ross Ice Shelf, Antarctica. Geobiology, 11, 377–395.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Carr, S. A., Orcutt, B. N., Mandernack, K. W., & Spear, J. R. (2015). Abundant Atribacteria in deep marine sediment from the Adelie Basin, Antarctica. Frontiers in Microbiology, 6, 872.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Celussi, M., Cataletto, B., Fonda Umani, S., & Del Negro, P. (2009a). Depth profiles of bacterioplankton assemblages and their activities in the Ross Sea. Deep Sea Research, 56, 2193–2205.CrossRefGoogle Scholar
  23. Celussi, M., Paoli, A., Crevatin, E., Bergamasco, A., Margiotta, F., Saggiomo, V., Fonda Umani, S., & Del Negro, P. (2009b). Short-term under-ice variability of prokaryotic plankton communities in coastal Antarctic waters (Cape Hallett, Ross Sea). Estuarine Coastal and Shelf Science, 81, 491–500.CrossRefGoogle Scholar
  24. Celussi, M., Bergamasco, A., Cataletto, B., Fonda Umani, S., & Del Negro, P. (2010). Water masses’ bacterial community structure and microbial activities in the Ross Sea, Antarctica. Ant Science, 22, 361–370.CrossRefGoogle Scholar
  25. Cho, B. C., & Azam, F. (1988). Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature, 332, 441–443.CrossRefGoogle Scholar
  26. Church, M. J., DeLong, E. F., Ducklow, H. W., Karner, M. B., Preston, C. M., & Karl, D. M. (2003). Abundance and distribution of planktonic Archaea and Bacteria in the waters west of the Antarctic Peninsula. Limnology and Oceanography, 48, 1893–1902.CrossRefGoogle Scholar
  27. Collins, R. E., Rocap, G., & Deming, J. W. (2010). Persistence of bacterial and archaeal communities in sea ice through an Arctic winter. Environmental Microbiology, 12, 1828–1841.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cowie, R. O., Maas, E. W., & Ryan, K. G. (2011). Archaeal diversity revealed in Antarctic sea ice. Antarctic Science, 23, 531–536.CrossRefGoogle Scholar
  29. Depoorter, M. A., Bamber, J. L., Griggs, J. A., Lenaerts, J. T., Ligtenberg, S. R., van den Broeke, M. R., & Moholdt, G. (2013). Calving fluxes and basal melt rates of Antarctic ice shelves. Nature, 502, 89–92.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Ducklow, H., Carlson, C., Church, M., Kirchman, D., Smith, D., & Steward, G. (2001). The seasonal development of the bacterioplankton bloom in the Ross Sea, Antarctica, 1994–1997. Deep Sea Research II, 48, 4199–4221.CrossRefGoogle Scholar
  31. Ducklow, H. W., Fraser, W., Karl, D. M., Quetin, L. B., Ross, R. M., Smith, R. C., Stammerjohn, S. E., Vernet, M., & Daniels, R. M. (2006). Water-column processes in the West Antarctic Peninsula and the Ross Sea: Interannual variations and food web structure. Deep Sea Research II, 53, 834–852.CrossRefGoogle Scholar
  32. Edwards, K. J., Becker, K., & Colwell, F. (2012). The deep, dark energy biosphere: Intraterrestrial life on earth. Annual Review of Earth and Planetary Sciences, 40, 551–568.CrossRefGoogle Scholar
  33. Eronen-Rasimus, E., Luhtanen, A. M., Rintala, J. M., Delille, B., Dieckmann, G., Karkman, A., & Tison, J. L. (2017). An active bacterial community linked to high chl-a concentrations in Antarctic winter-pack ice and evidence for the development of an anaerobic sea-ice bacterial community. The ISME Journal, 11, 2345–2355.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Evans, C., Thomson, P. G., Davidson, A. T., Bowie, A. R., Van Den Enden, R., Witte, H., & Brussaard, C. P. D. (2011). Potential climate change impacts on microbial distribution and carbon cycling in the Australian Southern Ocean. Deep Sea Research II, 58, 2150–2161.CrossRefGoogle Scholar
  35. Fabiano, M., & Danovaro, R. (1998). Enzymatic activity, bacterial distribution, and organic matter composition in sediments of the Ross Sea (Antarctica). Applied and Environmental Microbiology, 64, 3838–3845.PubMedPubMedCentralGoogle Scholar
  36. Fabiano, M., & Pusceddu, A. (1998). Total and hydrolyzable particulate organic matter (carbohydrates, proteins and lipids) at a coastal station in Terra Nova Bay (Ross Sea, Antarctica). Polar Biology, 19, 125–132.CrossRefGoogle Scholar
  37. Fernández-Méndez, M., Wenzhöfer, F., Peeken, I., Sørensen, H. L., Glud, R. N., et al. (2014). Composition, buoyancy regulation and fate of ice algal aggregates in the Central Arctic Ocean. PLoS One, 9, e107452.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Fonda Umani, S., Montia, M., Bergamasco, A., Cabrini, M., De Vittor, C., Burba, N., & Del Negro, P. (2005). Plankton community structure and dynamics versus physical structure from Terra Nova Bay to Ross Ice Shelf (Antarctica). Journal of Marine Systems, 55, 31–46.CrossRefGoogle Scholar
  39. Fuhrman, J. A., & Azam, F. (1980). Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Applied and Environmental Microbiology, 39, 1085–1095.PubMedPubMedCentralGoogle Scholar
  40. Gentile, G., Giuliano, L., D’Auria, G., Smedile, F., Azzaro, M., De Domenico, M., & Yakimov, M. M. (2006). Study of bacterial communities in Antarctic coastal waters by a combination of 16S rRNA and 16S rDNA sequencing. Environmental Microbiology, 8, 2150–2161.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Ghiglione, J., & Murray, A. (2012). Pronounced summer to winter differences and higher wintertime richness in coastal Antarctic marine bacterioplankton. Environmental Microbiology, 14, 617–629.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Gillan, D. C., & Danis, B. (2007). The archaebacterial communities in Antarctic bathypelagic sediments. Deep Sea Research, I54, 1682–1690.CrossRefGoogle Scholar
  43. Grossmann, S., & Dieckmann, G. S. (1994). Bacterial standing stock, activity, and carbon production during formation and growth of sea ice in Weddell Sea, Antarctica. Applied and Environmental Microbiology, 60, 2746–2753.PubMedPubMedCentralGoogle Scholar
  44. Grzymski, J. J., Carter, B. J., DeLong, E. F., Feldman, R. A., Ghadiri, A., & Murray, A. E. (2006). Comparative genomics of DNA fragments from six Antarctic marine planktonic bacteria. Applied and Environmental Microbiology, 72, 1532–1541.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Grzymski, J. J., Riesenfeld, C. S., Williams, T. J., Dussaq, A. M., Ducklow, H., Erickson, M., et al. (2012). A metagenomic assessment of winter and summer bacterioplankton from Antarctica Peninsula coastal surface waters. The ISME Journal, 6, 1901–1915.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Helmke, E., & Weyland, H. (1995). Bacteria in sea ice and underlying water of the eastern Weddel sea in midwinter. Marine Ecology Progress Series, 117, 269–287.CrossRefGoogle Scholar
  47. Hernández, E. A., Piquet, A. M.-T., Lopez, J. L., Buma, A. G., & Mac Cormack, W. P. (2015). Marine archaeal community structure from Potter Cove Antarctica: High temporal and spatial dominance of the phylum Thaumarchaeota. Polar Biology, 38, 117–130.CrossRefGoogle Scholar
  48. Isla, E., Masqué, P., Palanques, A., Sanchez-Cabeza, J. A., Bruach, J. M., Guillen, J., & Puig, P. (2002). Sediment accumulation rates and carbon burial in the bottom sediment in a high-productivity area: Gerlache Strait (Antarctica). Deep Sea Research, 49, 3275–3287.CrossRefGoogle Scholar
  49. Isla, E., Masqué, P., Palanques, A., Guillén, J., Puig, P., & Sanchez-Cabeza, J. A. (2004). Sedimentation of biogenic constituents during the last century in western Bransfield and Gerlache Straits, Antarctica: A relation to currents, primary production, and sea floor relief. Marine Geology, 209, 265–277.CrossRefGoogle Scholar
  50. Isla, E., Rossi, S., Palanques, A., Gili, J. M., Gerdes, D., & Amtz, W. (2006). Biochemical composition of marine sediment from the eastern Weddell Sea (Antarctica): High nutritive value in a high benthic-biomass environment. Journal of Marine Systems, 60, 255–267.CrossRefGoogle Scholar
  51. Jamieson, R. E., Heywood, J. L., Rogers, A. D., Billett, D. S. M., & Pearce, D. A. (2013). Bacterial biodiversity in deep-sea sediments from two regions of contrasting surface water productivity near the Crozet Islands, Southern Ocean. Deep Sea Research I, 75, 67–77.CrossRefGoogle Scholar
  52. Karl, D. M. (1993). Microbial processes in the southern oceans. In E. I. Friedmann (Ed.), Antarctic microbiology (pp. 1–63). New York: Wiley.Google Scholar
  53. Krembs, C., Eicken, H., Junge, K., & Deming, J. (2002). High concentrations of exopolymeric substances in Arctic winter sea ice: Implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep Sea Research Part I: Oceanographic Research Papers, 49, 2163–2181.CrossRefGoogle Scholar
  54. Landone Vescovo, I. A., Golemba, M. D., Di Lello, F. A., Culasso, A. C., Levin, G., Ruberto, L., MacCormack, W. P., & López, J. L. (2014). Rich bacterial assemblages from Maritime Antarctica (Potter Cove, South Shetlands) reveal several kinds of endemic and undescribed phylotypes. Revista Argentina de Microbiología, 46, 218–230.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Learman, D. R., Henson, M. W., Thrash, J. C., Temperton, B., Brannock, P. M., Santos, S. R., Mahon, A. R., & Halanych, K. M. (2016). Biogeochemical and microbial variation across 5500 km of Antarctic surface sediment implicates organic matter as a driver of benthic community structure. Frontiers in Microbiology, 7, 284.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lo Giudice, A., & Fani, R. (2015). Cold-adapted bacteria from the coastal Ross Sea (Antarctica): Linking microbial ecology to biotechnology. Hydrobiologia, 761, 417–441.CrossRefGoogle Scholar
  57. Lo Giudice, A., Brilli, M., Bruni, V., De Domenico, M., Fani, R., & Michaud, L. (2007). Bacterium-bacterium inhibitory interactions among psychrotrophic bacteria isolated from Antarctic seawaters (Terra Nova Bay, Ross Sea). FEMS Microbiology Ecology, 60, 383–396.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Lo Giudice, A., Caruso, C., Mangano, S., Bruni, V., De Domenico, M., & Michaud, L. (2012). Marine bacterioplankton diversity and community composition in an Antarctic coastal environment. Microbial Ecology, 63, 210–223.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Lo Giudice, A., Casella, P., Bruni, V., & Michaud, L. (2013). Response of bacterial isolates from Antarctic shallow sediments towards heavy metals, antibiotics and polychlorinated biphenyls. Ecotoxicology, 22, 240–250.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Luria, C. M., Ducklow, H. W., & Amaral-Zettler, L. A. (2014). Marine bacterial, archaeal and eukaryotic diversity and community structure on the continental shelf of the western Antarctic Peninsula. Aquatic Microbial Ecology, 73, 107–121.CrossRefGoogle Scholar
  61. Maas, E. W., Simpson, A. M., Martin, A., Thompson, S., Koh, E. Y., Davy, S. K., Ryan, K. G., & O’Toole, R. F. (2012). Phylogenetic analyses of bacteria in sea ice at Cape Hallett, Antarctica. New Zealand Journal of Marine and Freshwater Research, 46, 3–12.CrossRefGoogle Scholar
  62. Manganelli, M., Malfatti, F., Samo, T. J., Mitchell, B. G., Wang, H., & Azam, F. (2009). Major role of microbes in carbon fluxes during austral winter in the southern Drake Passage. PLoS One, 4, e6941.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Masquè, P., Isla, E., Sanchez-Cabeza, J. A., Palanques, A., Bruach, J. M., Puig, P., & Guillèn, J. (2002). Sediment accumulation rates and carbon fluxes to bottom sediments at the Western Bransfield Strait (Antarctica). Deep Sea Research, 49, 921–933.CrossRefGoogle Scholar
  64. Matos, M. N., Lozada, M., Anselmino, L. E., Musumeci, M. A., Henrissat, B., Jansson, J. K., Mac Cormack, W. P., Carroll, J., Sjöling, S., Lundgren, L., & Dionisi, H. M. (2016). Metagenomics unveils the attributes of the alginolytic guilds of sediments from four distant cold coastal environments. Environmental Microbiology, 18, 4471–4484.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Maugeri, T. L., Gugliandolo, C., & Bruni, V. (1996). Heterotrophic bacteria in the Ross Sea (Terra Nova Bay, Antarctica). New Microbiologica, 19, 67–76.PubMedPubMedCentralGoogle Scholar
  66. Mayor, D. J., Thornton, B., Hay, S., Zuur, A. F., Nicol, G. W., McWilliam, J. M., & Witte, U. F. M. (2012). Resource quality affects carbon cycling in deep-sea sediments. The ISME Journal, 6, 1740–1748.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Morata, N., Poulin, M., & Renaud, P. E. (2010). A multiple biomarker approach to tracking the fate of an ice algal bloom to the sea floor. Polar Biology, 34, 101–112.CrossRefGoogle Scholar
  68. Murray, A. E., & Grzymski, J. J. (2007). Diversity and genomics of Antarctic marine micro-organisms. Philosophical Transactions of the Royal Society B, 362, 2259–2271.CrossRefGoogle Scholar
  69. Murray, A. E., Preston, C. M., Massana, R., Taylor, L. T., Blakis, A., Wu, K., et al. (1998). Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Applied and Environmental Microbiology, 64, 2585–2595.PubMedPubMedCentralGoogle Scholar
  70. Nagata, T., Fukuda, H., Fukuda, R., & Koike, I. (2000). Bacterioplankton distribution and production in deep Pacific waters: Large-scale geographic variations and possible coupling with sinking particle fluxes. Limnology and Oceanography, 45, 426–435.CrossRefGoogle Scholar
  71. Pearce, D. A. (2012). Extremophiles in Antarctica: Life at low temperatures. In H. Stan-Lotter & S. Fendrihan (Eds.), Adaption of microbial life to environmental extremes (pp. 87–118). Vienna: Springer.CrossRefGoogle Scholar
  72. Pearce, I., Davidson, A. T., Bell, E. M., & Wright, S. (2007). Seasonal changes in the concentration and metabolic activity of bacteria and viruses at an Antarctic coastal site. Aquatic Microbial Ecology, 47, 11–23.CrossRefGoogle Scholar
  73. Peck, L. S., Barnes, D. K. A., Cook, A. J., Fleming, A. H., & Clarke, A. (2010). Negative feedback in the cold: Ice retreat produces new carbon sinks in Antarctica. Global Change Biology, 16, 2614–2623.CrossRefGoogle Scholar
  74. Piquet, A. M., Bolhuis, H., Davidson, A. T., & Buma, A. G. (2010). Seasonal succession and UV sensitivity of marine bacterioplankton at an Antarctic coastal site. FEMS Microbiology Ecology, 73, 68–82.PubMedGoogle Scholar
  75. Powell, S. M., Bowman, J. P., Snape, I., & Stark, J. S. (2003). Microbial community variation in pristine and polluted nearshore Antarctic sediments. FEMS Microbiology Ecology, 45, 135–145.PubMedCrossRefGoogle Scholar
  76. Rodríguez-Marconi, S., De la Iglesia, R., Díez, B., Fonseca, C. A., Hajdu, E., & Trefault, N. (2015). Characterization of bacterial, archaeal and eukaryote symbionts from Antarctic sponges reveals a high diversity at a three-domain level and a particular signature for this ecosystem. PLoS One, 10, e0138837.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Ruff, S. E., Probandt, D., Zinkann, A. C., Iversen, M. H., Klaas, C., Wurzberg, L., et al. (2014). Indications for algae-degrading benthic microbial communities in deep-sea sediments along the Antarctic Polar Front. Deep Sea Research I, 108, 6–16.CrossRefGoogle Scholar
  78. Sarmiento, J. L., & Gruber, N. (2006). Ocean biogeochemical dynamics. Princeton: Princeton University Press.Google Scholar
  79. Schloss, I. R., Wasilowska, A., Dumont, D., Almandoz, G. O., Hernando, M. P., Michaud-Tremblay, C.-A., Saravia, L., Rzepecki, M., Monien, P., Monien, D., Kopczyńska, E. E., Bers, A. V., & Ferreyra, G. A. (2014). On the phytoplankton bloom in coastal waters of southern King George Island (Antarctica) in January 2010: An exceptional feature? Limnology and Oceanography, 59, 195–210.CrossRefGoogle Scholar
  80. Signori, C. N., Thomas, F., Enrich-Prast, A., Pollery, R. C., & Sievert, S. M. (2014). Diversity and community structure across environmental gradients in Bransfield Strait, Western Antarctic Peninsula. Frontiers in Microbiology, 5, 647.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Smith, D. C., Simon, M., Alldredge, A. L., & Azam, F. (1992). Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature, 359, 139–142.CrossRefGoogle Scholar
  82. Thomas, D. N., & Dieckmann, G. S. (2002). Antarctic sea ice-a habitat for extremophiles. Science, 295, 641.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Tolar, B. B., Ross, M. J., Wallsgrove, N. J., Liu, Q., Aluwihare, L. I., Popp, B. N., & Hollibaugh, J. T. (2016). Contribution of ammonia oxidation to chemoautotrophy in Antarctic coastal waters. The ISME Journal, 10, 2605–2619.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Torstensson, A., Dinasquet, J., Chierici, M., Fransson, A., Riemann, L., & Wulff, A. (2015). Physicochemical control of bacterial and protist community composition and diversity in Antarctic sea ice. Environmental Microbiology, 17, 3869–3881.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Underwood, G. J. C., Fietz, S., Papadimitriou, S., et al. (2010). Distribution and composition of dissolved extracellular polymeric substances (EPS) in Antarctic sea ice. Marine Ecology Progress Series, 404, 1–19.CrossRefGoogle Scholar
  86. Wilkins, D., Lauro, F. M., Williams, T. J., Demaere, M. Z., Brown, M. V., Hoffman, J. M., Andrews-Pfannkoch, C., McQuaid, J. B., Riddle, M. J., Rintoul, S. R., & Cavicchioli, R. (2013). Biogeographic partitioning of Southern Ocean microorganisms revealed by metagenomics. Environmental Microbiology, 15, 1318–1333.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Williams, T. J., Long, E., Evans, F., DeMaere, M. Z., Lauro, F. M., Raftery, M. J., et al. (2012). A metaproteomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters. The ISME Journal, 6, 1883–1900.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Wölfl, A. C., Lim, C. H., Hass, H. C., Lindhorst, S., Tosonotto, G., Lettmann, K. A., Kuhn, G., Wolff, J.-O., & Abele, D. (2014). Distribution and characteristics of marine habitats in a subpolar bay based on hydroacoustics and bed shear stress estimates—Potter Cove, King George Island, Antarctica. Geo-Marine Letters, 34, 435–446.CrossRefGoogle Scholar
  89. Yakimov, M. M., Gentile, G., Bruni, V., Cappello, S., D’Auria, G., Golyshin, P. N., & Giuliano, L. (2004). Crude oil-induced structural shift of coastal bacterial communities of Rod Bay (Terra Nova Bay, Ross Sea) and characterization of cultured cold-adapted hydrocarbonoclastic bacteria. FEMS Microbiology Ecology, 49, 419–432.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Yu, Y., Li, H.-R., Zeng, Y.-X., & Chen, B. (2011). Bacterial diversity and bioprospecting for cold-active hydrolytic enzymes from culturable bacteria associated with sediment from Nella Fjord, Eastern Antarctica. Marine Drugs, 9, 184–195.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for the Biological Resources and Marine BiotechnologiesNational Research Council, U.O.S. MessinaMessinaItaly

Personalised recommendations