Living with Pigments: The Colour Palette of Antarctic Life

  • Juan José Marizcurrena
  • María Fernanda Cerdá
  • Diego Alem
  • Susana Castro-SowinskiEmail author
Part of the Springer Polar Sciences book series (SPPS)


The production of pigments is a common feature that may help microorganisms to cope with the harsh conditions found in Antarctica. They have functions such as protection against UV irradiation and superoxide and nitrogen reactive species (antioxidant activity) and modulation of membrane fluidity under cold stress. In addition, they act as antibiotics, modulating the microbial communities in their natural environments, and harvest light for increasing the efficiency of photosynthesis, thus influencing the biogeochemical cycles. This chapter deals with the chemistry and the biological role of microbial pigments (except chlorophylls) in the Antarctic environment and also includes a brief overview of the potential biotechnological use of pigments.


Microbial production of pigments UV-resistance Antioxidant activity Membrane fluidity Photosynthesis Antimicrobial activity 



The authors thank the Uruguayan Antarctic Institute for the logistic support during the stay in the Antarctic Base Artigas. S. Castro-Sowinski, J.J. Marizcurrena, M.F. Cerdá and D. Alem are members of the National Research System (SNI, Sistema Nacional de Investigadores).

This work was partially supported by PEDECIBA (Programa de Desarrollo de las Ciencias Básicas), CSIC (Comisión Sectorial de Investigación Científica; Project C667) and ANII (Agencia Nacional de Investigación e Innovación, Project FMV_3_2016_1_1226654). The work of JJM and DA was supported by ANII and CAP (Comisión Académica de Posgrado, UdelaR).


  1. Alshatwi, A. A., Subash-Babu, P., & Antonisamy, P. (2016). Violacein induces apoptosis in human breast cancer cells through up regulation of BAX, p53 and down regulation of MDM2. Experimental and Toxicologic Pathology, 68(1), 89–97.PubMedCrossRefGoogle Scholar
  2. Asencio, G., et al. (2014). Antibacterial activity of the Antarctic bacterium Janthinobacterium sp. SMN 33.6 against multi-resistant Gram-negative bacteria. Electronic Journal of Biotechnology, 17(1), 1–5.CrossRefGoogle Scholar
  3. Avery, L. M., Lewis Smith, R. I., & West, H. M. (2003). Response of rhizosphere microbial communities associated with Antarctic hairgrass (Deschampsia antarctica) to UV radiation. Polar Biology, 26, 525–529.CrossRefGoogle Scholar
  4. Beckstead, A. A., et al. (2017). Ultrafast excited-state deactivation of the bacterial pigment violacein. The Journal of Physical Chemistry B, 121, 7855–7861.PubMedCrossRefGoogle Scholar
  5. Benavent-González, A., Delgado-Baquerizo, M., Fernández-Brun, L., Singh, B. K., Maestre, F. T., & Sancho, L. G. (2018). Identity of plant, lichen and moss species connects with microbial abundance and soil functioning in maritime Antarctica. Plant and Soil, 429, 35–52.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bromberg, N., et al. (2010). Growth inhibition and pro-apoptotic activity of violacein in Ehrlich ascites tumor. Chemico-Biological Interactions, 186(1), 43–52.PubMedCrossRefGoogle Scholar
  7. Calogero, G., Bartolotta, A., Di Marco, G., Di Carlo, A., & Bonaccorso, F. (2015). Vegetable-based dye-sensitized solar cells. Chemical Society Reviews, 44, 3244–3294.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Castro-Sowinski, S., Matan, O., Bonafede, P., & Okon, Y. (2007). A thioredoxin of Sinorhizobium meliloti CE52G is required for melanin production and symbiotic nitrogen fixation. Molecular Plant-Microbe Interactions, 20, 986–993.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Chen, M., Xiao, X., Wang, P., Zeng, X., & Wang, F. (2005). Arthrobacter ardleyensis sp. nov., isolated from Antarctic lake sediment and deep-sea sediment. Archives of Microbiology, 183, 301–305.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Cockell, C. S., & Horneck, G. (2001). The history of the UV radiation climate of the earth – theoretical and space-based observations. Photochemistry and Photobiology, 73, 447–451.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Cockell, C. S., & Knowland, J. (1999). Ultraviolet radiation screening compounds. Biological Reviews, 74, 311–345.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Cude, W. N., et al. (2012). Production of the antimicrobial secondary metabolite indigoidine contributes to competitive surface colonization by the marine roseobacter Phaeobacter sp. strain Y4I. Applied and Environmental Microbiology, 78, 4771–4780.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Dadachova, E., & Casadevall, A. (2008). Ionizing radiation: How fungi cope, adapt, and exploit with the help of melanin. Current Opinion in Microbiology, 11, 525–531.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Day, P. A., Villalba, M. S., Herrero, O. M., Arancibia, L. A., & Alvarez, H. M. (2017). Formation of indigoidine derived-pigments contributes to the adaptation of Vogesella sp. strain EB to cold aquatic iron-oxidizing environments. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 110(3), 415–428.CrossRefGoogle Scholar
  15. de Carvalho, D. D., Costa, F. T. M., Duran, N., & Haun, M. (2006). Cytotoxic activity of violacein in human colon cancer cells. Toxicology in Vitro, 20(8), 1514–1521.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Dieser, M., Greenwood, M., & Foreman, C. M. (2010). Carotenoid pigmentation in antarctic heterotrophic bacteria as a strategy to withstand environmental stresses. Arctic, Antarctic, and Alpine Research, 42(4), 396–405.CrossRefGoogle Scholar
  17. Dillon, J. G., & Castenholz, R. W. (1999). Scytonemin, a cyanobacterial sheath pigment, protects against uvc radiation: Implications for early photosynthetic life. Journal of Phycology, 35, 673–681.CrossRefGoogle Scholar
  18. Dong, N., Li, H.-R., Yuan, M., Zhang, X.-H., & Yu, Y. (2015). Deinococcus antarcticus sp. nov., isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 65(Pt 2), 331–335.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Dsouza, M., Taylor, M. W., Turner, S. J., & Aislabie, J. (2015). Genomic and phenotypic insights into the ecology of Arthrobacter from Antarctic soils. BMC Genomics, 16, 36.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Durán, M., Ponezi, A. N., Faljoni-Alario, A., Teixeira, M. F. S., Justo, G. Z., & Durán, N. (2012). Potential applications of violacein: A microbial pigment. Medicinal Chemistry Research, 21(7), 1524–1532.CrossRefGoogle Scholar
  21. Durán, N., et al. (2016). Advances in Chromobacterium violaceum and properties of violacein-its main secondary metabolite: A review. Biotechnology Advances, 34, 1030–1045.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Edwards, H. G. M., de Oliveira, L. F. C., Cockell, C. S., Ellis-Evans, J. C., & Wynn-Williams, D. D. (2004). Raman spectroscopy of senescing snow algae: Pigmentation changes in an Antarctic cold desert extremophile. International Journal of Astrobiology, 3, 125–129.CrossRefGoogle Scholar
  23. Ehling-Schulz, M., & Scherer, S. (1999). Uv protection in cyanobacteria. European Journal of Phycology, 34, 329–338.CrossRefGoogle Scholar
  24. Enciso, P., & Cerdá, M. F. (2016). Solar cells based on the use of photosensitizers obtained from Antarctic red algae. Cold Regions Science and Technology, 126, 51–54.CrossRefGoogle Scholar
  25. Eriksen, N. T. (2008). Production of phycocyanin – a pigment with applications in biology, biotechnology, foods and medicine. Applied Microbiology and Biotechnology, 80, 1–14.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Falkowski, P. G. (1994). The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosynthesis Research, 39, 235–258.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Fernández-Carazo, R., Namsaraev, Z., Mano, M. J., Ertz, D., & Wilmotte, A. (2012). Cyanobacterial diversity for an anthropogenic impact assessment in the Sør Rondane Mountains area, Antarctica. Antarctic Science, 24, 229–242.CrossRefGoogle Scholar
  28. Fernández-Valiente, E., Camacho, A., Rochera, C., Rico, E., Vincent, W. F., & Quesada, A. (2007). Community structure and physiological characterization of microbial mats in byers peninsula, Livingston Island (South Shetland Islands, Antarctica). FEMS Microbiology Ecology, 59, 377–385.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Ferreira, A., Ciotti, Á. M., Mendes, C. R. B., Uitz, J., & Bricaud, A. (2017). Phytoplankton light absorption and the package effect in relation to photosynthetic and photoprotective pigments in the northern tip of Antarctic Peninsula. Journal of Geophysical Research, Oceans, 122, 7344–7363.CrossRefGoogle Scholar
  30. Ficner, R., & Huber, R. (1993). Refined crystal structure of phycoerythrin from Porphyridium cruentum at 0.23-nm resolution and localization of the γ subunit. European Journal of Biochemistry, 218, 103–106.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Fiedor, J., & Burda, K. (2014). Potential role of carotenoids as antioxidants in human health and disease. Nutrients, 6, 466–488.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fleming, E. D., & Castenholz, R. W. (2007). Effects of periodic desiccation on the synthesis of the UV-screening compound, scytonemin, in cyanobacteria. Environmental Microbiology, 9, 1448–1455.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Fong, N. J. C., Burgess, M. L., Barrow, K. D., & Glenn, D. R. (2001). Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress. Applied Microbiology and Biotechnology, 56, 750–756.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Ganzert, L., Bajerski, F., Mangelsdorf, K., Lipski, A., & Wagner, D. (2011). Arthrobacter livingstonensis sp. nov. and arthrobacter cryotolerans sp. nov., salt-tolerant and psychrotolerant species from antarctic soil. International Journal of Systematic and Evolutionary Microbiology, 61, 979–984.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Garcia-Pichel, F. (1998). Solar ultraviolet and the evolutionary history of cyanobacteria. Origins of Life and Evolution of the Biosphere, 28, 321–347.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Garcia-Pichel, F., & Castenholz, R. W. (1991). Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. Journal of Phycology, 27, 395–409.CrossRefGoogle Scholar
  37. Gromek, S. M., et al. (2016). Leisingera sp. JC1, a bacterial isolate from hawaiian bobtail squid eggs, produces indigoidine and differentially inhibits vibrios. Frontiers in Microbiology, 7, 1342.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hawes, I., & Schwarz, A.-M. (1999). Photosynthesis in an extreme shade environment: Benthic microbial mats from lake hoare, a permanently ice-covered antarctic lake. Journal of Phycology, 35, 448–459.CrossRefGoogle Scholar
  39. Kimura, T., Fukuda, W., Sanada, T., & Imanaka, T. (2015). Characterization of water-soluble dark-brown pigment from Antarctic bacterium, Lysobacter oligotrophicus. Journal of Bioscience and Bioengineering, 120(1), 58–61.PubMedCrossRefGoogle Scholar
  40. Klassen, J. L., & Foght, J. M. (2008). Differences in carotenoid composition among Hymenobacter and related strains support a tree-like model of carotenoid evolution. Applied and Environmental Microbiology, 74, 2016–2022.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Kodach, L. L., Bos, C. L., Durán, N., Peppelenbosch, M. P., Ferreira, C. V., & Hardwick, J. C. H. (2006). Violacein synergistically increases 5-fluorouracil cytotoxicity, induces apoptosis and inhibits Akt-mediated signal transduction in human colorectal cancer cells. Carcinogenesis, 27(3), 508–516.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Kuhn, R., Starr, M. P., Kuhn, D. A., Bauer, H., & Knackmuss, H. J. (1965). Indigoidine and other bacterial pigments related to 3,3′-bipyridyl. Archives of Microbiology, 51, 71–84.Google Scholar
  43. Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350–382.CrossRefGoogle Scholar
  44. Marizcurrena, J. J., Morel, M. A., Braña, V., Morales, D., Martinez-López, W., & Castro-Sowinski, S. (2017). Searching for novel photolyases in UVC-resistant Antarctic bacteria. Extremophiles, 21(2), 409–418.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Martínez-Rosales, C., & Castro-Sowinski, S. (2011). Antarctic bacterial isolates that produce cold-active extracellular proteases at low temperature but are active and stable at high temperature. Polar Research, 30, 7123–7130.CrossRefGoogle Scholar
  46. Matz, C., et al. (2004). Impact of violacein-producing bacteria on survival and feeding of bacterivorous nanoflagellates. Applied and Environmental Microbiology, 70(3), 1593–1599.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Mcclean, K. H., et al. (1997). Quorum sensing and Chrornobacteriurn violaceurn: Exploitation of violacein production and inhibition for the detection of N-acyl homoserine lactones. Microbiology, 143, 3703–3711.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Melo, P. S., Justo, G. Z., De Azevedo, M. B. M., Durán, N., & Haun, M. (2003). Violacein and its β-cyclodextrin complexes induce apoptosis and differentiation in HL60 cells. Toxicology, 186(3), 217–225.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Mojib, N., Philpott, R., Huang, J. P., Niederweis, M., & Bej, A. K. (2010). Antimycobacterial activity in vitro of pigments isolated from Antarctic bacteria. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 98(4), 531–540.CrossRefGoogle Scholar
  50. Montagni, T., et al. (2018). Dye sensitized solar cells based on Antarctic Hymenobacter sp. UV11 dyes. Environmental Sustainability, 1, 89–97.CrossRefGoogle Scholar
  51. Morel, M. A., & Castro-Sowinski, S. (2013). The complex molecular signaling network in microbe–plant interaction. In Plant microbe symbiosis: Fundamentals and advances (pp. 169–199). New Delhi: Springer.CrossRefGoogle Scholar
  52. Mueller, D. R., Vincent, W. F., Bonilla, S., & Laurion, I. (2005). Extremotrophs, extremophiles and broadband pigmentation strategies in a high arctic ice shelf ecosystem. FEMS Microbiology Ecology, 53(1), 73–87.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Mulkidjanian, A. Y., & Junge, W. (1997). On the origin of photosynthesis as inferred from sequence analysis. A primordial UV-protector as common ancestor of reaction centers and antenna proteins. Photosynthesis Research, 51, 27–42.CrossRefGoogle Scholar
  54. Mushir, S., Deep, S., & Fatma, T. (2014). Screening of cyanobacterial strains for UV screening compound scytonemin – environmental perspectives. The International Journal of Innovative Research in Science, Engineering and Technology, 3, 12–20.Google Scholar
  55. Narsing Rao, M. P., Xiao, M., & Li, W. J. (2017). Fungal and bacterial pigments: Secondary metabolites with wide applications. Frontiers in Microbiology, 8., no. JUN, 1–13.CrossRefGoogle Scholar
  56. Nguyen, K.-H., Chollet-Krugler, M., Gouault, N., & Tomasi, S. (2013). UV-protectant metabolites from lichens and their symbiotic partners. Natural Product Reports, 30, 1490–1508.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Nigam, P. S., & Luke, J. S. (2016, June). 2016 pigments in food additives ScienceDirect Food additives: Production of microbial pigments and their antioxidant properties.CrossRefGoogle Scholar
  58. Onofri, S., Selbmann, L., Zucconi, L., & Pagano, S. (2004). Antarctic microfungi as models for exobiology. Planetary and Space Science, 52, 229–237.CrossRefGoogle Scholar
  59. Órdenes-Aenishanslins, N., Anziani-Ostuni, G., Vargas-Reyes, M., Alarcón, J., Tello, A., & Pérez-Donoso, J. M. (2016). Pigments from UV-resistant Antarctic bacteria as photosensitizers in dye sensitized solar cells. Journal of Photochemistry and Photobiology B: Biology, 162, 707–714.CrossRefGoogle Scholar
  60. Patel, S. N., et al. (2018). Antioxidant activity and associated structural attributes of Halomicronema phycoerythrin. International Journal of Biological Macromolecules, 111, 359–369.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Pentecost, A., & Edwards, H. G. M. (2002). Raman spectroscopy and light microscopy of a modern and sub-fossil microstromatolite: Rivularia haematites (cyanobacteria, Nostocales). International Journal of Astrobiology, 1, 357–363.CrossRefGoogle Scholar
  62. Quesada, A., & Vincent, W. F. (1997). Strategies of adaptation by antarctic cyanobacteria to ultraviolet radiation. European Journal of Phycology, 32, 335–342.CrossRefGoogle Scholar
  63. Reddy, G. S. N., Prakash, J. S. S., Prabahar, V., Matsumoto, G. I., Stackebrandt, E., & Shivaji, S. (2003). Kocuria polaris sp. nov., an orange-pigmented psychrophilic bacterium isolated from an Antarctic cyanobacterial mat sample. International Journal of Systematic and Evolutionary Microbiology, 53, 977–984.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Reverchon, S., Rouanet, C., Expert, D., & Nasser, W. (2002). Characterization of indigoidine biosynthetic genes in Erwinia chrysanthemi and role of this blue pigment in pathogenicity. Journal of Bacteriology, 184, 654–665.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Robinson, C. H. (2001). Cold adaptation in Arctic and Antarctic fungi. New Phytologist, 151, 341–353.CrossRefGoogle Scholar
  66. Roos, J. C., & Vincent, W. F. (1998). Temperature dependence of UV radiation effects on Antarctic cyanobacteria. Journal of Phycology, 34, 118–125.CrossRefGoogle Scholar
  67. Sabbe, K., et al. (2004). Salinity, depth and the structure and composition of microbial mats in continental Antarctic lakes. Freshwater Biology, 49(3), 296–319.CrossRefGoogle Scholar
  68. Sancar, A., Lindsey-Boltz, L. A., Ünsal-Kaçmaz, K., & Linn, S. (2004). Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annual Review of Biochemistry, 73, 39–85.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Seckbach, J., & Oren, A. (2010). Microbial Mats.Google Scholar
  70. Selbmann, L., Zucconi, L., Isola, D., & Onofri, S. (2015). Rock black fungi: Excellence in the extremes, from the Antarctic to space. Current Genetics, 61, 335–345.PubMedCrossRefGoogle Scholar
  71. Shivaji, S., Ray, M. K., Kumar, G. S., Reddy, G. S. N., Saisree, L., & Wynn-Williams, D. D. (1991). Identification of Janthinobacterium lividum from the soils of the islands of Scotia Ridge and from Antarctic peninsula. Polar Biology, 11, 267–271.CrossRefGoogle Scholar
  72. Singh, A., Krishnan, K. P., Prabaharan, D., & Sinha, R. K. (2017). Lipid membrane modulation and pigmentation: A cryoprotection mechanism in Arctic pigmented bacteria. Journal of Basic Microbiology, 57(9), 770–780.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Sinha, R. P., Klisch, M., Gröniger, A., & Häder, D. P. (1998). Ultraviolet-absorbing/screening substances in cyanobacteria, phytoplankton and macroalgae. Journal of Photochemistry and Photobiology B: Biology, 47, 83–94.CrossRefGoogle Scholar
  74. Smith, H. J., Foreman, C. M., Akiyama, T., Franklin, M. J., Devitt, N. P., & Ramaraj, T. (2016). Genome sequence of Janthinobacterium sp. CG23_2, a Violacein-producing isolate from an Antarctic supraglacial stream. Genome Announcements, 4, e01468–e01415.PubMedPubMedCentralGoogle Scholar
  75. Solano, F. (2014). Melanins: Skin pigments and much more—Types, structural models, biological functions, and formation routes. New Journal of Science, 498276, 1–28.CrossRefGoogle Scholar
  76. Stal, L. J. (2012). Cyanobacterial mats and stromatolites. In Ecology of cyanobacteria II: Their diversity in space and time. Dordrecht: Springer.Google Scholar
  77. Sutthiwong, N., Fouillaud, M., Valla, A., Caro, Y., & Dufossé, L. (2014). Bacteria belonging to the extremely versatile genus Arthrobacter as novel source of natural pigments with extended hue range. Food Research International, 65, 56–162.Google Scholar
  78. Taton, A., Grubisic, S., Brambilla, E., De Wit, R., & Wilmotte, A. (2003). Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): A morphological and molecular approach. Applied and Environmental Microbiology, 69, 5157–5169.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Teixeira, L. C. R. S., Peixoto, R. S., & Rosado, A. S. (2013). Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay in Maritime Antarctica. In Molecular microbial ecology of the rhizosphere. Hoboken: Wiley-Blackwell.Google Scholar
  80. Tian, B., & Hua, Y. (2010). Carotenoid biosynthesis in extremophilic Deinococcus-Thermus bacteria. Trends in Microbiology, 18, 512–520.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Tuli, H. S., Chaudhary, P., Beniwal, V., & Sharma, A. K. (2015). Microbial pigments as natural color sources: Current trends and future perspectives. Journal of Food Science and Technology, 52(8), 4669–4678.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Turick, C. E., Tisa, L. S., & Caccavo, F. (2002). Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY. Applied and Environmental Microbiology, 68, 2436–2444.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Venil, C. K., Zakaria, Z. A., & Ahmad, W. A. (2013). Bacterial pigments and their applications. Process Biochemistry, 48, 1065–1079.CrossRefGoogle Scholar
  84. Vincent, W. F. (2000). Cyanobacterial dominance in the polar regions. In The ecology of cyanobacteria. Dordrecht: Kluwer Academic Publishers.Google Scholar
  85. Vincent, W. F., Downes, M. T., Castenholz, R. W., & Howard-Williams, C. (1993). Community structure and pigment organisation of cyanobacteria-dominated microbial mats in Antarctica. European Journal of Phycology, 28(4), 213–221.CrossRefGoogle Scholar
  86. Vinocur, A., & Pizarro, H. (1995). Periphyton flora of some lotic and lentic environments of Hope Bay (Antarctic Peninsula). Polar Biology, 15, 401–414.CrossRefGoogle Scholar
  87. Vopel, K., & Hawes, I. (2006). Photosynthetic performance of benthic microbial mats in Lake Hoare, Antarctica. Limnology and Oceanography, 51, 1801–1812.CrossRefGoogle Scholar
  88. Wang, X. Q., et al. (2001). Structure of C-phycocyanin from Spirulina platensis at 2.2 Å resolution: A novel monoclinic crystal form for phycobiliproteins in phycobilisomes. Acta Crystallographica, Section D: Biological Crystallography, 57, 784–792.CrossRefGoogle Scholar
  89. Wisniewska, A., & Subczynski, W. K. (1998). Effects of polar carotenoids on the shape of the hydrophobic barrier of phospholipid bilayers. Biochimica et Biophysica Acta, Biomembranes, 1368, 235–246.CrossRefGoogle Scholar
  90. Wisniewska, A., & Subczynski, W. K. (2006). Accumulation of macular xanthophylls in unsaturated membrane domains. Free Radical Biology & Medicine, 40, 1820–1826.CrossRefGoogle Scholar
  91. Woronowicz, K., et al. (2012). Near-IR absorbing solar cell sensitized with bacterial photosynthetic membranes. Photochemistry and Photobiology, 88, 1467–1472.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Wynn-Williams, D. D., & Edwards, H. G. M. (2000). Proximal analysis of regolith habitats and protective biomolecules in situ by laser Raman spectroscopy: Overview of terrestrial Antarctic habitats and Mars analogs. Icarus, 144, 486–503.CrossRefGoogle Scholar
  93. Wynn-Williams, D. D., Edwards, H. G. M., & Garcia-Pichel, F. (1999). Functional biomolecules of antarctic stromatolitic and endolithic cyanobacterial communities. European Journal of Phycology, 34, 381–391.CrossRefGoogle Scholar
  94. Wynn-Williams, D. D., Edwards, H. G. M., Newton, E. M., & Holder, J. M. (2002). Pigmentation as a survival strategy for ancient and modern photosynthetic microbes under high ultraviolet stress on planetary surfaces. International Journal of Astrobiology, 1(1), 39–49.Google Scholar
  95. Yu, D., Xu, F., Valiente, J., Wang, S., & Zhan, J. (2013). An indigoidine biosynthetic gene cluster from Streptomyces chromofuscus ATCC 49982 contains an unusual IndB homologue. Journal of Industrial Microbiology & Biotechnology, 40, 159–168.CrossRefGoogle Scholar
  96. Zakhia, F., Jungblut, A. D., Taton, A., Vincent, W. F., & Wilmotte, A. (2008). Cyanobacteria in cold ecosystems. In Psychrophiles: From biodiversity to biotechnology. Cham: Springer.Google Scholar
  97. Zhao, Y. L., Song, D. M., Qiang, Y. H., Gu, X. Q., Zhu, L., & Song, C. B. (2014). Dye-sensitized solar cells based on TiO2 hollow spheres/TiO2 nanotube array composite films. Applied Surface Science, 309, 85.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Juan José Marizcurrena
    • 1
  • María Fernanda Cerdá
    • 2
  • Diego Alem
    • 1
    • 3
  • Susana Castro-Sowinski
    • 1
    Email author
  1. 1.Biochemistry and Molecular Biology, Faculty of SciencesUniversidad de la RepúblicaMontevideoUruguay
  2. 2.Laboratory of Biomaterials, Faculty of SciencesUniversidad de la RepúblicaMontevideoUruguay
  3. 3.Epigenetics and Genomics Instability LaboratoryInstituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay

Personalised recommendations