Microbial Role in the Ecology of Antarctic Plants

  • Júnia Schultz
  • Alexandre Soares RosadoEmail author
Part of the Springer Polar Sciences book series (SPPS)


Antarctica is a true mosaic of extremes. It is a continent of superlatives, with low temperatures, freezing and thawing cycles, high salinity and intense solar radiation, among other environmental extremes. These unique conditions exert evolutionary pressure, which selects the biological community to develop in place, such as the microbial community. Ice-free soils represent a very small proportion of the total land area of Antarctica, and in these areas, a scarce Antarctic vegetation grows. The vegetation of these ice-free habitats is characterized by low coverage and low productivity, being mainly composed of lower plants, with only two vascular plant species, Deschampsia antarctica and Colobanthus quitensis. Climate change in Antarctica may present new threats to terrestrial ecosystems particularly by increasing the distribution of the native plants but also increasing the successful establishment of non-native species. It is known that the vegetation cover has an important role in the microbial diversity of Antarctic soils due that these microorganisms produce molecules that cooperate with the establishment and development of plants in harsh conditions and vice versa. Our chapter selects and discusses some of the few studies that describe microbe-plant interactions in Antarctica and how these interactions can modulate the distribution, diversity and abundance of native vascular plants and microbial diversity in Antarctica.


Rhizospheric microbes Deschampsia antarctica Colobanthus quitensis Microbial diversity Development of plants 


  1. Abraham, J. P., Baringer, M., Bindoff, N. L., et al. (2013). A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Reviews of Geophysics, 51, 450483.CrossRefGoogle Scholar
  2. Achouak, W., & Haichar, E. (2013). Shaping of microbial community structure and function in the rhizosphere by four diverse plant species. In F. J. de Bruijn (Ed.), Molecular microbial ecology of the rhizosphere (Vol. 1, pp. 161–167). Hoboken: Wiley Blackwell.CrossRefGoogle Scholar
  3. Aislabie, J., Saul, D. J., & Foght, J. M. (2006). Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles, 10(3), 171–179.PubMedCrossRefGoogle Scholar
  4. Aislabie, J., Jordan, S., Ayton, J., Klassen, J. L., Barker, G. M., et al. (2009). Bacterial diversity associated with ornithogenic soil of the Ross Sea region, Antarctica. Canadian Journal of Microbiology, 55, 21–36.PubMedCrossRefGoogle Scholar
  5. Amenábar, M. J., Flores, P. A., Pugin, B., Boehmwald, F. A., & Blamey, J. M. (2013). Archaeal diversity from hydrothermal systems of Deception Island, Antarctica. Polar Biology, 36, 373–380.CrossRefGoogle Scholar
  6. Antranikian, G., Vorgias, C. E., & Bertoldo, C. (2005). Extreme environments as a resource for microorganisms and novel biocatalysts. Advances in Biochemical Engineering/Biotechnology, 96, 219–262.PubMedCrossRefGoogle Scholar
  7. Arenz, S., Meydan, S., Starosta, A. L., Berninghausen, O., Beckmann, R., Vázquez-Laslop, N., & Wilson, D. N. (2014). Drug-sensing by the ribosome induces translational arrest via active site perturbation. Molecular Cell, 56, 446–452.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Avery, L. M., Smith, R. I. L., & West, H. M. (2003). Response of rhizosphere microbial communities associated with Antarctic hairgrass (Deschampsia antarctica) to UV radiation. Polar Biology, 26, 525–529.CrossRefGoogle Scholar
  9. Awasthi, A., Singh, M., Soni, S. K., Singh, R., & Kalra, A. (2014). Biodiversity acts as insurance of productivity of bacterial communities under abiotic perturbations. The ISME Journal, 8, 2445–2452.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233–266.PubMedCrossRefGoogle Scholar
  11. Barea, J. M., Pozo, M. J., Azcón, R., & Azcón-Aguilar, C. (2013). Microbial interactions in the rhizosphere. In F. J. de Bruijn (Ed.), Molecular microbial ecology of the rhizosphere (pp. 29–44). Hoboken: Wiley-Blackwell.CrossRefGoogle Scholar
  12. Bargagli, R. (2008). Environmental contamination in Antarctic ecosystems. Science of the Total Environment, 400, 212–226.PubMedCrossRefGoogle Scholar
  13. Barrientos, L., Gidekel, M., & Gutiérrez-Moraga, A. (2008). Characterization of rhizospheric bacteria isolated from Deschampsia antarctica Desv. World Journal of Microbiology and Biotechnology, 24, 2289–2296.CrossRefGoogle Scholar
  14. Barry, S. M., & Challis, G. L. (2009). Recent advances in siderophore biosynthesis. Current Opinion in Chemical Biology, 13, 205–215.PubMedCrossRefGoogle Scholar
  15. Berríos, G., Cabrera, G., Gidekel, M., & Gutiérrez-Moraga, A. (2013). Characterization of a novel Antarctic plant growth-promoting bacterial strain and its interaction with Antarctic hair grass (Deschampsia antarctica Desv). Polar Biology, 36, 349–362.CrossRefGoogle Scholar
  16. Bottos, E. M., Woo, A. C., Zawar-Reza, P., Pointing, S. B., & Cary, S. C. (2014). Airborne bacterial populations above desert soils of the McMurdo Dry Valleys, Antarctica. Microbial Ecology, 67, 120–128.PubMedCrossRefGoogle Scholar
  17. Brakhage, A. A., & Schroeckh, V. (2011). Fungal secondary metabolites - strategies to activate silent gene clusters. Fungal Genetic Biology, 48, 15–22.PubMedCrossRefGoogle Scholar
  18. Bravo, L. A., & Griffith, M. (2005). Characterization of antifreeze activity in Antarctic plants. Journal of Experimental Botany, 56, 1189–1196.PubMedCrossRefGoogle Scholar
  19. Bravo, L. A., Ulloa, N., Zuniga, G. E., Casanova, A., Corcuera, L. J., & Alberdi, M. (2001). Cold resistance in Antarctic angiosperms. Physiologia Plantarum, 111, 55–65.CrossRefGoogle Scholar
  20. Broeckling, C. D., Broz, A. K., Bergelson, J., Manter, D. K., & Vivanco, J. M. (2008). Root exudates regulate soil fungal community composition and diversity. Applied and Environmental Microbiology, 74, 738.PubMedCrossRefGoogle Scholar
  21. Cakmakci, R., Donme, F., & Aydin Sahin, A. F. (2006). Growth promotion of plants by plant growth promoting rhizobacteria under greenhouse and two field different soil conditions. Soil Biology and Biochemistry, 38, 1482–1487.CrossRefGoogle Scholar
  22. Cary, S. C., McDonald, I. R., Barrett, J. E., & Cowan, D. A. (2010). On the rocks: The microbiology of Antarctic Dry Valley soils. Nature Reviews Microbiology, 8, 129138.CrossRefGoogle Scholar
  23. Chan, K. G., Atkinson, S., Mathee, K., et al. (2011). Characterization of N-acylhomoserine lactone-degrading bacteria associated with the Zingiber officinale (ginger) rhizosphere: Co-existence of quorum quenching and quorum sensing in Acinetobacter and Burkholderia. BMC Microbiology, 11, 51.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chew, O., Lelean, S., John, U. P., & Spangenberg, G. C. (2012). Cold acclimation you induce rapid and dynamic changes file in freeze tolerance in the cryophile mechanisms Deschampsia antarctica E. Desv. Plant Cell & Environment, 35, 829–837.CrossRefGoogle Scholar
  25. Chwedorzewska, K. J. (2008). Poa annua L. in Antarctic – Searching for the source of introduction. Polar Biology, 31, 263–268.CrossRefGoogle Scholar
  26. Chwedorzewska, K. J. (2009). Terrestrial Antarctic ecosystems in the changing world: an overview. Polish Polar Research, 30, 263–276.Google Scholar
  27. Convey, P. (1996). The influence of environmental characteristics on life history attributes of Antarctic terrestrial biota. Biological Reviews, 71, 191–225.CrossRefGoogle Scholar
  28. Convey, P. (2011). Antarctic terrestrial biodiversity in a changing world. Polar Biology, 34, 1629–1641.CrossRefGoogle Scholar
  29. Convey, P. (2013). Antarctic ecosystems. In S. A. Levin (Ed.), Encyclopedia of biodiversity (Vol. 1, 2nd ed., pp. 179–188). Waltham: Academic.CrossRefGoogle Scholar
  30. Convey, P., & Smith, R. I. L. (2006). Responses of terrestrial Antarctic ecosystems to climate change. Plant Ecology, 182, 1–10.Google Scholar
  31. Convey, P., Bindschadler, R., Di Prisco, G., Fahrbach, E., Gutt, J., Hodgson, D. A., Mayewski, P. A., Summerhayes, C. P., Turner, J., & ACCE Consortium. (2009). Antarctic climate change and the environment. Antarctic Science, 21, 541–563.CrossRefGoogle Scholar
  32. Cowan, D. A. (Ed.). (2014). Antarctic terrestrial microbiology. Berlin: Springer.Google Scholar
  33. Cowan, D. A., & Tow, L. (2004). Endangered Antarctic environments. Annual Review of Microbiology, 58, 649–690.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Cury, J. C., Jurelevicius, D. A., Villela, H. D. M., Jesus, H. E., Peixoto, R. S., Schaeder, C. E. G. R., Bícego, M. C., Seldin, L., & Rosado, A. S. (2015). Microbial diversity and hydrocarbon depletion in low and high diesel-polluted soil samples from Keller Peninsula, South Shetland Islands. Antarctic Science, 11, 1–11.Google Scholar
  35. Dieser, M., Greenwood, M., & Foreman, C. M. (2010). Carotenoid pigmentation in Antarctic heterotrophic bacteria as a strategy to withstand environmental stresses. Arctic, Antarctic, and Alpine Research, 42, 396–405.CrossRefGoogle Scholar
  36. Effmert, U., Kalderas, J., Warnke, R., & Piechulla, B. (2012). Volatile mediated interactions between bacteria and fungi in the soil. Journal of Chemical Ecology, 38, 665–703.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Eisenhauer, N., Scheu, S., & Jousset, A. (2012). Bacterial diversity stabilizes community productivity. PLoS One, 7, 1–5.CrossRefGoogle Scholar
  38. Fukuhara, Y., Horii, S., Matsuno, T., Matsumiya, Y., Mukai, M., & Kubo, M. (2013). Distribution of hydrocarbon-degrading bacteria in the soil environment and their contribution to bioremediation. Applied Biochemistry and Biotechnology, 170, 329–339.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Ganzert, L., Lipski, A., Hubberten, H. W., & Wagner, D. (2011). The impact of different soil parameters on the community structure of dominant bacteria from nine different soils located on Livingston Island, South Shetland Archipelago, Antarctica. FEMS Microbiology Ecology, 76, 476–491.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Giełwanowska, I., Pastorczyk, M., & Kellmann-Sopyła, W. (2011). Influence of environmental changes on polar physiology and development of vascular plants. Papers on Global Change IGBP, 18, 53–62.CrossRefGoogle Scholar
  41. Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Goordial, J., Raymond-Bouchard, I., Riley, R., Ronholm, J., Shapiro, N., Woyke, T., & Whyte, L. (2016). Improved high-quality draft genome sequence of the Eurypsychrophile Rhodotorula sp. JG1b, isolated from permafrost in the hyperarid upper-elevation McMurdo Dry Valleys, Antarctica. Genome Announcements, 4, e00069–e00016.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Gyaneshwar, P., Kumar, G. N., Parekh, L. J., & Poole, P. S. (2002). Role of soil microorganisms in improving P nutrition of plants. Plant and Soil, 245, 83–93.CrossRefGoogle Scholar
  44. Haichar, F. Z., Marol, C., Berge, O., Rangel-Castro, J. I., Prosser, J. I., et al. (2008). Plant host habitat and root exudates shape soil bacterial community structure. The ISME Journal, 2, 1221–1230.PubMedCrossRefGoogle Scholar
  45. Hartmann, A., & Schikora, A. (2012). Quorum sensing of bacteria and trans-kingdom interactions of N-acyl homoserine lactones with eukaryotes. Journal of Chemical Ecology, 38, 704–713.PubMedCrossRefGoogle Scholar
  46. Herbold, C. W., McDonald, I. R., & Cary, C. (2014). Microbial ecology of geothermal habitats in Antarctica. In D. A. Cowan (Ed.), Antarctic terrestrial microbiology: Physical and biological properties of Antarctic soils (pp. 181–215). New York: Springer.CrossRefGoogle Scholar
  47. Hider, R. C., & Kong, X. (2010). Chemistry and biology of siderophores. Natural Product Reports, 27, 637–657.PubMedCrossRefGoogle Scholar
  48. Ho, A., Di Lonardo, D. P., & Bodelier, P. L. E. (2017). Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiology Ecology, 93, 1–14.Google Scholar
  49. Jesus, H. E., Peixoto, R. S., Cury, J. C., Van Elsas, J. D., & Rosado, A. S. (2015). Evaluation of soil bioremediation techniques in an aged diesel spill at the Antarctic Peninsula. Applied Microbiology and Biotechnology, 99, 10815–10827.PubMedCrossRefGoogle Scholar
  50. Johnson, N. C., & Graham, J. H. (2013). The continuum concept remains a useful framework for studying mycorrhizal functioning. Plant and Soil, 363, 411–419.CrossRefGoogle Scholar
  51. Jorquera, M. A., Shaharoona, B., Nadeem, S. M., de la Luz Mora, M., & Crowley, D. E. (2012). Plant growth-promoting rhizobacteria associated with ancient clones of creosote bush (Larrea tridentata). Microbial Ecology, 64, 1008–1017.PubMedCrossRefGoogle Scholar
  52. Koide, R. T. (2000). Functional complementarity in the arbuscular mycorrhizal symbiosis. New Phytologist, 147(2), 233–235.CrossRefGoogle Scholar
  53. Kowalchuk, G. A., Yergeau, E., Leveau, J. H. J., Sessitch, A., & Bailey, M. (2010). Plant-associated microbial communities. In W.-T. Liu & J. K. Jansson (Eds.), Environmental molecular microbiology (pp. 133–147). Norwich: Caister Academic Press.Google Scholar
  54. Lankau, R. A. (2011). Intraspecific variation in allelochemistry determines an invasive species’ impact on soil microbial communities. Oecologia, 165, 453–463.PubMedCrossRefGoogle Scholar
  55. Lemanceau, P., Expert, D., Gaymard, F., Bakker, P., & Briat, J. F. (2009). Role of iron in plant–microbe interactions. Advances in Botanical Research, 51, 491–549.CrossRefGoogle Scholar
  56. Lewis Smith, R. I. (2003). The enigma of Colobanthus quitensis and Deschampsia antarctica in Antarctica. In A. H. I. Huickes, W. W. C. Gieskes, R. L. M. Schorno, S. M. van der Vies, & W. I. Volff (Eds.), Antarctic biology in a global context (pp. 234–239). Leiden: Backham Publishers.Google Scholar
  57. Makhalanyane, T. P., Valverde, A., Birkeland, N. K., Cary, S. C., Marla Tuffin, I., & Cowan, D. A. (2013). Evidence for successional development in Antarctic hypolithic bacterial communities. The ISME Journal, 7, 2080–2090.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Mantovani, A., & Vieira, R. C. (2000). Leaf micromorphology of Antarctic pearlwort Colobanthus quitensis (Kunth) Bartl. Polar Biology, 23, 531–538.CrossRefGoogle Scholar
  59. Mapelli, F., Marasco, R., Balloi, A., Rolli, E., Cappitelli, F., Daffonchio, D., & Borin, S. (2012). Mineral-microbe interactions: Biotechnological potential of bioweathering. Journal of Biotechnology, 157, 473–481.PubMedCrossRefGoogle Scholar
  60. Margesin, R., & Miteva, V. (2011). Diversity and ecology of psychrophilic microorganisms. Research in Microbiology, 162, 346–361.PubMedCrossRefGoogle Scholar
  61. Matthijs, S., Wauven, C. V., Cornu, B., Lumeng, Y., Cornelis, P., Thomas, C. M., & Ongena, M. (2014). Antimicrobial properties of Pseudomonas strains producing the antibiotic mupirocin. Research in Microbiology, 165, 695–704.PubMedCrossRefGoogle Scholar
  62. Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37, 634–663.PubMedCrossRefGoogle Scholar
  63. Mishra, P. K., Bisht, S. C., Ruwari, P., Selvakumar, G., Bisht, J. K., Bhatt, J. C., et al. (2011). Alleviation of cold stress effects in wheat (Triticum aestivum L.) seedlings by application of psychrotolerant pseudomonads from N.W. Himalayas. Archives of Microbiology, 193, 497–513.PubMedCrossRefGoogle Scholar
  64. Molina-Montenegro, M. A., Carrasco-Urra, F., Rodrigo, C., Convey, P., Valladares, F., & Gianoli, E. (2012). Occurrence of the non-native annual bluegrass on the Antarctic mainland and its negative effects on native plants. Conservation Biology, 26, 717–723.PubMedCrossRefGoogle Scholar
  65. Molina-Montenegro, M. A., Carrasco-Urra, F., Acuña-Rodríguez, I., Oses, R., Torres-Díaz, C., & Chedorzewska, K. (2014). Assessing the importance of human activities for the establishment of the invasive Poa annua in Antarctica. Polar Research, 33, e21425.CrossRefGoogle Scholar
  66. Nędzarek, A., & Chwedorzewska, K. J. (2004). Nutrients content in water flash chosen sites of Deschampsia Antarctica (King George Island, Antarctica). Folia Universitatis Agriculture Stetinensis, 234, 299–304.Google Scholar
  67. Niederberger, T. D., Sohm, J. A., Gunderson, T. E., Parker, A. E., Tirindelli, J., & Capone, D. G. (2015). Microbial community composition of transiently wetted Antarctic Dry Valley soils. Frontiers in Microbiology, 6, 1–12.Google Scholar
  68. Olech, M., & Chwedorzewska, K. J. (2011). The first appearance and establishment of alien vascular plant in natural habitats on the fore field of retreating glacier in Antarctica. Antarctic Science, 23, 153–154.CrossRefGoogle Scholar
  69. Pajuelo, E., Rodríguez-Llorente, I. D., Lafuente, A., & Caviedes, M. Á. (2011). Legume–Rhizobium symbioses as a tool for bioremediation of heavy metal polluted soils. In M. Khan, A. Zaidi, R. Goel, & J. Musarrat (Eds.), Biomanagement of metal-contaminated soils. Environmental pollution (pp. 95–123). Dordrecht: Springer.CrossRefGoogle Scholar
  70. Parnikoza, I., Maidanuk, D. N., & Kozeretska, I. A. (2007). Are Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. migratory relicts? Cytology and Genetics, 41, 36–40.PubMedCrossRefGoogle Scholar
  71. Parnikoza, I., Kozeretska, I., & Kunakh, V. (2011). Vascular plants of the maritime Antarctic: Origin and adaptation. American Journal of Plant Sciences, 2, 381–395.CrossRefGoogle Scholar
  72. Parnikoza, I. Y. U., Abakumov, E. V., Dykyy, I. V., Pilipenko, D. V., Shvydun, P. P., Kozeretska, I. A., & Kunakh, V. A. (2015). Influence of birds on the spatial distribution of Deschampsia antarctica E. Desv. on Galindez Island (Argentine Islands, maritime Antarctic). Vestnik Sankt-Peterburgskogo Universiteta, 1, 78–97.Google Scholar
  73. Peixoto, R., Chaer, G. M., Carmo, F. L., Araujo, F. V., Paes, J. E., Volpon, A., Santiago, G. A., & Rosado, A. S. (2011). Bacterial communities reflect the spatial variation in pollutant levels in Brazilian mangrove sediment. Antonie Van Leeuwenhoek, 99, 341–354.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Pertierra, L. R., Lara, F., Benayas, J., & Hughes, K. A. (2013). Poa pratensis L., current status of the longest-established nonnative vascular plant in the Antarctic. Polar Biology, 36, 1473–1481.CrossRefGoogle Scholar
  75. Pertierra, L. R., Hughes, K. A., Tejedo, P., Enríquez, N., Luciañez, M. J., & Benayas, J. (2017). Eradication of the non-native Poa pratensis colony at Cierva Point, Antarctica: A case study of international cooperation and practical management in an area under multi-party governance. Environmental Science & Policy, 69, 50–56.CrossRefGoogle Scholar
  76. Pineda, A., Zheng, S.-J., van Loon, J. J. A., Pieterse, C. M. J., & Dicke, M. (2010). Helping plants to deal with insects: The role of beneficial soil-borne microbes. Trends in Plant Science, 15(9), 507–514.PubMedCrossRefGoogle Scholar
  77. Presta, L., Inzucchi, I., Bosi, E., Fondi, M., Perrin, E., Miceli, E., Turino, M. L., Giudice, A. L., Pascale, D., & Fani, R. (2016). Draft genome sequence of Flavobacterium sp. strain TAB 87, able to inhibit the growth of cystic fibrosis bacterial pathogens belonging to the Burkholderia cepacia complex. Genome Announcements, 4, e00410–e00416.PubMedPubMedCentralGoogle Scholar
  78. Rosa, L., Vaz, A., Caligiorne, R. B., Campolina, S., & Rosa, C. A. (2009). Endophytic fungi associated with the Antarctic grass Deschampsia antarctica Desv. (Poaceae). Polar Biology, 32, 161–167.CrossRefGoogle Scholar
  79. Rothschild, L. J., & Mancinelli, R. L. (2001). Life in extreme environments. Nature, 409, 1092–1101.PubMedCrossRefGoogle Scholar
  80. Rousk, J., & Bååth, E. (2007). Fungal biomass production and turnover in soil estimated using the acetate-in-ergosterol technique. Soil Biology and Biochemistry, 39, 2173–2177.CrossRefGoogle Scholar
  81. Schnitzer, S. A., Klironomos, J. N., HilleRisLambers, J., et al. (2011). Soil microbes drive the classic plant diversity-productivity pattern. Ecology, 92, 296–303.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Shaw, J., Spear, D., Greve, M., & Chown, S. L. (2010). Taxonomic homogenization and differentiation across Southern Ocean islands differ among insects and vascular plants. Journal of Biogeography, 37, 217–228.CrossRefGoogle Scholar
  83. Sieverding, E., & Oehl, F. (2006). Revision of Entrophospora and description of Kuklospora and Intraspora, two new genera in the arbuscular mycorrhizal Glomeromycetes. Journal of Applied Botany and Food Quality, 80, 69–81.Google Scholar
  84. Simões, J. C., Arigony-Neto, J., & Bremer, U. F. (2004). O uso de mapas antárticos em publicações. Pesq Antart Bras, 4, 191–197.Google Scholar
  85. Stevenson, F. J. (2005). Cycles of soil: Carbon, nitrogen, phosphorus, sulfur, micronutrients. New York: Wiley.Google Scholar
  86. Teixeira, L. C., Peixoto, R. S., Cury, J. C., Sul, W. J., Pellizari, V. H., et al. (2010). Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. The ISME Journal, 4, 989–1001.PubMedCrossRefGoogle Scholar
  87. Teixeira, L. C. R. S., Yergeau, E., Balieiro, F. C., Piccolo, M. C., Peixoto, R. S., Rosado, A. S., & Greer, C. W. (2013). Plant and bird presence strongly influences the microbial communities in soils of Admirality Bay. Maritime Antarctica. PLoS One, 8, e66109.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Teplitski, M., Warriner, K., Bartz, J., & Schneider, K. R. (2011). Untangling metabolic and communication networks: Interactions of enterics with phytobacteria and their implications in produce safety. Trends in Microbiology, 19, 121–127.PubMedCrossRefGoogle Scholar
  89. Tomova, I., Stoilova-Disheva, M., Lazarkevich, I., & Vasileva-Tonkova, E. (2015). Antimicrobial activity and resistance to heavy metals and antibiotics of heterotrophic bacteria isolated from sediment and soil samples collected from two Antarctic islands. Frontiers in Life Science, 8, 348–357.CrossRefGoogle Scholar
  90. Upson, R., Newsham, K. K., & Read, D. J. (2008). Root-fungal associations of Colobanthus quitensis and Deschampsia antarctica in the maritime and subantarctic. Arctic, Antarctic, and Alpine Research, 40, 592–599.CrossRefGoogle Scholar
  91. Upson, R., Newsham, K. K., Bridge, P. D., Pearce, D. A., & Read, D. J. (2009). Taxonomic affinities of dark septate root endophytes of Colobanthus quitensis and Deschampsia antarctica, the two native Antarctic vascular plant species. Fungal Ecology, 2, 184–196.CrossRefGoogle Scholar
  92. Wagg, C., Jansa, J., Schmid, B., & van der Heijden, M. G. A. (2011). Belowground biodiversity effects of plant symbionts support above ground productivity. Ecology Letters, 14, 1001–1009.PubMedCrossRefGoogle Scholar
  93. Xiong, F. S., Ruhland, C. T., & Day, T. A. (1999). Photosynthetic temperature response of the Antarctic vascular plants Colobanthus quitensis and Deschampsia Antarctica. Physiologia Plantarum, 106, 276–286.CrossRefGoogle Scholar
  94. Yergeau, E. (2014). Fell-field soil microbiology. In D. Cowan (Ed.), Antarctic terrestrial microbiology. Berlin: Springer.Google Scholar
  95. Yergeau, E., & Kowalchuk, G. A. (2008). Responses of Antarctic soil microbial communities and associated functions to temperature and freeze-thaw cycle frequency. Environmental Microbiology, 10, 2223–2235.PubMedCrossRefGoogle Scholar
  96. Yergeau, E., Bokhorst, S., Huiskes, A. H., Boschker, H. T., Aerts, R., et al. (2007a). Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiology Ecology, 59, 436–451.PubMedCrossRefGoogle Scholar
  97. Yergeau, E., Newsham, K. K., Pearce, D. A., & Kowalchuk, G. A. (2007b). Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environmental Microbiology, 9, 2670–2682.CrossRefGoogle Scholar
  98. Zamioudis, C., & Pieterse, C. M. J. (2012). Modulation of host immunity by beneficial microbes. Molecular Plant-Microbe Interactions, 25, 139–150.PubMedCrossRefGoogle Scholar
  99. Zhang, C., & Kim, S. K. (2010). Research and application of marine microbial enzymes: Status and prospects. Marine Drugs, 8, 1920–1934.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de GóesFederal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations