Advertisement

Marine Fungi Associated with Antarctic Macroalgae

  • Mayara B. Ogaki
  • Maria T. de Paula
  • Daniele Ruas
  • Franciane M. Pellizzari
  • César X. García-Laviña
  • Luiz H. RosaEmail author
Chapter
Part of the Springer Polar Sciences book series (SPPS)

Abstract

Fungi are well known for their important roles in terrestrial ecosystems, but filamentous and yeast forms are also active components of microbial communities from marine ecosystems. Marine fungi are particularly abundant and relevant in coastal systems where they can be found in association with large organic substrata, like seaweeds. Antarctica is a rather unexplored region of the planet that is being influenced by strong and rapid climate change. In the past decade, several efforts have been made to get a thorough inventory of marine fungi from different environments, with a particular emphasis on those associated with the large communities of seaweeds that abound in littoral and infralittoral ecosystems. The algicolous fungal communities obtained were characterized by a few dominant species and a large number of singletons, as well as a balance among endemic, indigenous, and cold-adapted cosmopolitan species. The long-term monitoring of this balance and the dynamics of richness, dominance, and distributional patterns of these algicolous fungal communities is proposed to understand and model the influence of climate change on the maritime Antarctic biota. In addition, several fungal isolates from marine Antarctic environments have shown great potential as producers of bioactive natural products and enzymes and may represent attractive sources of biotechnological products.

Keywords

Marine fungi Algicolous fungal communities Bioactive natural products Ecological role Dynamics of richness 

References

  1. Arenz, B. E., Held, B. W., Jurgens, J. A., Farrell, R. L., & Blanchette, R. A. (2006). Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biology and Biochemistry, 38(10), 3057–3064.CrossRefGoogle Scholar
  2. Arenz, B. E., Blanchette, R. A., Farrell, R. L. (2014). Fungal diversity in Antarctic soils. In Antarctic terrestrial microbiology (pp. 35–53). Germany: Springer.CrossRefGoogle Scholar
  3. Azmi, O. R., & Seppelt, R. D. (1998). The broad-scale distribution of microfungi in the Windmill Islands region, continental Antarctica. Polar Biology, 19(2), 92–100.CrossRefGoogle Scholar
  4. Bass, D., Howe, A., Brown, N., Barton, H., Demidova, H., Michele, H., Li, L., Sanders, H., Watkinson, S., Willcock, S., & Richards, T. A. (2007). Yeast forms dominate fungal diversity in the deep oceans. Proceedings of the Royal Society B, 274, 3069–3307.CrossRefGoogle Scholar
  5. Bridge, P. D., & Spooner, B. M. (2012). Non-lichenized Antarctic fungi: Transient visitors or members of a cryptic ecosystem? Fungal Ecology, 5(4), 381–394.CrossRefGoogle Scholar
  6. Bugni, T. S., & Ireland, C. M. (2004). Marine-derived fungi: A chemically and biologically diverse group of microorganisms. Natural Product Reports, 21(1), 143–163.CrossRefGoogle Scholar
  7. de Menezes, G. C., Godinho, V. M., Porto, B. A., Gonçalves, V. N., & Rosa, L. H. (2017). Antarctomyces pellizariae sp. nov., a new, endemic, blue, snow resident psychrophilic ascomycete fungus from Antarctica. Extremophiles, 21, 259–269.CrossRefGoogle Scholar
  8. Donachie, S. P., & Zdanowski, M. K. (1998). Potential digestive function of bacteria in krill Euphausia superba stomach. Aquatic Microbial Ecology, 14, 129–136.CrossRefGoogle Scholar
  9. Duarte, A. W. F., Passarini, M. R. Z., Delforno, T. P., Pellizzari, F. M., Cipro, C. V. Z., Montone, R. C., Petry, M. V., Putzke, J., Rosa, L. H., & Sette, L. D. (2016). Yeasts from macroalgae and lichens that inhabit the South Shetland Islands, Antarctica. Environmental Microbiology Reports, 8, 874–888.CrossRefGoogle Scholar
  10. Ellis-Evans, J. C. (1996). Microbial diversity and function in Antarctic freshwater ecosystems. Biodiversity and Conservation, 5, 1395–1431.CrossRefGoogle Scholar
  11. Fell, J. W., & Hunter, I. L. (1968). Isolation of heterothallic yeast strains of Metschnikowia Kamienski and their mating reactions with Chlamydozyma wickerham spp. Antonie Van Leeuwenhoek, 34, 365–376.CrossRefGoogle Scholar
  12. Furbino, L. E., Godinho, V. M., Santiago, I. F., Pellizari, F. M., Alves, T. M., Zani, C. L., Junior, P. A. S., Romanha, A. J., Carvalho, A. G. O., Gil, L. H. V. G., Rosa, A. C., Minnis, A. M., & Rosa, L. H. (2014). Diversity patterns, ecology and biological activities of fungal communities associated with the endemic macroalgae across the Antarctic Peninsula. Microbial Ecology, 67, 775–787.CrossRefGoogle Scholar
  13. Furbino, L., Pellizzari, F. M., Neto, P. C., Rosa, C. A., & Rosa, L. H. (2017). Isolation of fungi associated with macroalgae from maritime Antarctica and their production of agarolytic and carrageenolytic activities. Polar Biology.  https://doi.org/10.1007/s00300-017-2213-1.CrossRefGoogle Scholar
  14. Gerday, C., Aittaleb, M., Bentahir, M., Chessa, J. P., Claverie, P., Collins, T., & Hoyoux, A. (2000). Cold-adapted enzymes: From fundamentals to biotechnology. Trends in Biotechnology, 18, 103–107.CrossRefGoogle Scholar
  15. Glöckner, F. O., Stal, L. J., Sandaa, R. A., Gasol, J. M., O’Gara, F., Hernandez, F., Labrenz, M., Stoica, E., Varela, M. M., Bordalo, A., & Pitta, P. (2012). In J. B. Calewaert & N. McDonough (Eds.), Marine microbial diversity and its role in ecosystem functioning and environmental change, Marine Board Position Paper 17. Ostend: Marine Board-ESF.Google Scholar
  16. Godinho, V. M., Furbino, L., Santiago, I. F., Pelizzari, F. M., Yokoya, N. S., Pupo, D., Dicla, A., Alves, T. M., Junior, P. A., Romanha, A. J., Zani, C. L., Cantrell, C. L., Rosa, C. A., & Rosa, L. H. (2013). Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME, 7, 77–145.CrossRefGoogle Scholar
  17. Gonçalves, V. N., Vaz, A. B., Rosa, C. A., & Rosa, L. H. (2012). Diversity and distribution of fungal communities in lakes of Antarctica. FEMS Microbiology Ecology, 82(2), 459–471.CrossRefGoogle Scholar
  18. Gonçalves, V. N., Campos, L. S., Melo, I. S., Pellizari, V. H., Rosa, C. A., & Rosa, L. H. (2013). Penicillium solitum: A mesophilic, psychrotolerant fungus present in marine sediments from Antarctica. Polar Biology, 36, 1823–1831.CrossRefGoogle Scholar
  19. Gonçalves, V. N., Carvalho, C. R., Johann, S., Mendes, G., Alves, T. M., Zani, C. L., Junior, P. A. S., Murta, S. M. F., Romanha, A. J., Cantrell, C. L., Rosa, C. A., & Rosa, L. H. (2015). Antibacterial, antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica. Polar Biology, 38, 1143–1152.CrossRefGoogle Scholar
  20. Gonçalves, V. N., Vitoreli, G. A., Menezes, G. C. A., Mendes, C. R. B., Secchi, E. R., Rosa, C. A., & Rosa, L. H. (2017). Taxonomy, phylogeny and ecology of cultivable fungi present in seawater gradients across the Northern Antarctica Peninsula. Extremophiles, 21, 1005–1015.CrossRefGoogle Scholar
  21. Grasso, S., Bruni, V., & Maio, G. (1997). Marine fungi in Terra Nova Bay (Ross Sea, Antarctica). The New Microbiologica, 20, 371–376.PubMedGoogle Scholar
  22. Henríquez, M., Vergara, K., Norambuena, J., Beiza, A., Maza, F., Ubilla, P., Araya, I., Chávez, R., San-Martín, A., Darias, J., Darias, M. J., & Vaca, I. (2014). Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential. World Journal of Microbiology and Biotechnology, 30, 65–76.CrossRefGoogle Scholar
  23. Herrera, L. M., García-Laviña, C. X., Marizcurrena, J. J., Volonterio, O., de León, R. P., & Castro-Sowinski, S. (2017). Hydrolytic enzyme-producing microbes in the Antarctic oligochaete Grania sp. (Annelida). Polar Biology, 40, 947–953.CrossRefGoogle Scholar
  24. Hyde, K. D., Jones, E. B. G., Leano, E., Pointing, S. B., Poonyth, A. D., & Vrijmoed, L. L. P. (1998). Role of fungi in marine ecosystems. Biodiversity and Conservation, 7, 1147–1161.CrossRefGoogle Scholar
  25. Johnson, T. W., & Sparrow, F. K. (1961). Fungi in oceans and estuaries. Fungi in oceans and estuaries. Science, 137, 662–663.Google Scholar
  26. Jones, G. E. B., Suetrong, S., Sakayaroj, J., Bahkali, A. H., Abdel-Wahab, M. A., Boekhout, T., & Pang, K. (2015). Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Diversity, 73, 1–72.CrossRefGoogle Scholar
  27. Kohlmeyer, J., & Kohlmeyer, E. (1979). Marine mycology: The higher fungi. New York: Academy Press.Google Scholar
  28. Kohlmeyer, J., Volkmann-Kohlmeyer, B., & Newell, S. Y. (2004). Marine and estuarine mycelial Eumycota and Oomycota. In G. M. Mueller, G. G. Bills, & M. S. Foster (Eds.), Biodiversity of fungi: Inventory and monitoring methods. New York: Elsevier Academic Press.Google Scholar
  29. Loque, C. P., Medeiros, A. O., Pellizzari, F. M., Oliveira, E. C., Rosa, C. A., & Rosa, L. H. (2010). Fungal community associated with marine macroalgae from Antarctica. Polar Biology, 33, 641–648.CrossRefGoogle Scholar
  30. Mercantini, R., Marsella, R., & Cervellati, M. C. (1989). Keratinophilic fungi isolated from Antarctic soil. Mycopathologia, 106, 47–52.CrossRefGoogle Scholar
  31. Moore, J. K., Doney, S. C., Glover, D. M., & Fung, I. Y. (2002). Iron cycling and nutrient-limitation patterns in surface waters of the World Ocean. Deep Sea Research, Part II, 49, 463–507.CrossRefGoogle Scholar
  32. Morel, F. M. M., & Price, N. M. (2003). The biogeochemical cycles of trace metals in the oceans. Science, 300, 944.CrossRefGoogle Scholar
  33. Nedzarek, A., & Rakusa-Suszczewski, S. (2004). Decomposition of macroalgae and the release of nutrient Admiralty Bay, King George, Antarctica. Polar Biosci, 17, 26–35.Google Scholar
  34. Nelson, D. M., DeMaster, D. J., Dunbar, R. B., & Smith, W. O. J. (1996). Cycling of organic carbon and biogenic silica in the Southern Ocean: Estimates of water-column and sedimentary fluxes on the Ross Sea continental shelf. Journal of Geophysical Research, 101, 18519–18532.CrossRefGoogle Scholar
  35. Pellizzari, F., Silva, M. C., Silva, E. M., Medeiros, A., Oliveira, M. C., Yokoya, N. S., Rosa, L. H., & Colepicolo, P. (2017). Diversity and spatial distribution of seaweeds in the South Shetland Islands, Antarctica: An updated database for environmental monitoring under climate change scenarios. Polar Biology, 40, 1671.CrossRefGoogle Scholar
  36. Raghukumar, S. (2017). Fungi in coastal and oceanic marine ecosystems. Marine Fungi (p. 378). Germany: Springer.CrossRefGoogle Scholar
  37. Ramanan, R., Kim, B. H., Cho, D. H., Oh, H. M., & Kim, H. S. (2016). Algae-bacteria interactions: Evolution, ecology and emerging applications author links open overlay. Biotechnology Advances, 34, 14–39.CrossRefGoogle Scholar
  38. Richards, T. A., Jones, M. D., Leonard, G., & Bass, D. (2012). Marine fungi: Their ecology and molecular diversity. Annual Review of Marine Science, 4, 495–522.CrossRefGoogle Scholar
  39. Richmond, A. (2004). Handbook of microalgal culture: Biotechnology and applied phycology (p. 566). Oxford: Blackwell Science Ltd.Google Scholar
  40. Rosa, L. H., Vaz, A. B., Caligiorne, R. B., Campolina, S., & Rosa, C. A. (2009). Endophytic fungi associated with the Antarctic grass Deschampsia antarctica Desv (Poaceae). Polar Biology, 32, 161–167.CrossRefGoogle Scholar
  41. Ruisi, S., Barreca, D., Selbmann, L., Zucconi, L., & Onofri, S. (2007). Fungi in Antarctica. Reviews in Environmental Science and Biotechnology, 6, 127–141.CrossRefGoogle Scholar
  42. Santiago, I. F., Alves, T. M., Rabello, A., Junior, P. A. S., Romanha, A. J., Zani, C. L., Rosa, C. A., & Rosa, L. H. (2012). Leishmanicidal and antitumoral activities of endophytic fungi associated with the Antarctic angiosperms Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. Extremophiles, 16, 95–103.CrossRefGoogle Scholar
  43. Santiago, I. F., Soares, M. A., Rosa, C. A., & Rosa, L. H. (2015). Lichensphere: A protected natural microhabitat of the non-lichenised fungal communities living in extreme environments of Antarctica. Extremophiles, 19, 1087–1097.CrossRefGoogle Scholar
  44. Santiago, I. F., Rosa, C. A., & Rosa, L. H. (2017). Endophytic symbiont yeasts associated with the Antarctic angiosperms Deschampsia antarctica and Colobanthus quitensis. Polar Biology, 40, 177–183.CrossRefGoogle Scholar
  45. Stchigel, A. M., Josep, C. A. N. O., Mac Cormack, W., & Guarro, J. (2001). Antarctomyces psychrotrophicus gen. et sp. nov., a new ascomycete from Antarctica. Mycological Research, 105, 377–382.CrossRefGoogle Scholar
  46. Suryanarayanan, T. S. (2012). Fungal endosymbionts of seaweeds. In Biology of marine fungi (pp. 53–69). Germany: Springer.Google Scholar
  47. Suryanarayanan, T. S., Venkatachalam, A., Thirunavukkarasu, N., Ravishankar, J. P., Doble, M., & Geetha, V. (2010). Internal mycobiota of marine macroalgae from the Tamilnadu coast: Distribution, diversity and biotechnological potential. Botanica Marina, 53, 457–468.CrossRefGoogle Scholar
  48. Vaz, A. B., Rosa, L. H., Vieira, M. L., Garcia, V. D., Brandão, L. R., Teixeira, L. C., & Rosa, C. A. (2011). The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Brazilian Journal of Microbiology, 42, 937–947.CrossRefGoogle Scholar
  49. Voss, M., Bange, H. W., Dippner, J. W., Middelburg, J. J., Montoya, J. P., & Ward, B. (2013). The marine nitrogen cycle: Recent discoveries, uncertainties and the potential relevance of climate change. Phil Trans R Soc B, 368, 0121.CrossRefGoogle Scholar
  50. Wiencke, C., & Amsler, C. D. (2012). Seaweeds and their communities in polar regions. Seaweed biology: Novel insights into ecophysiology, ecology and utilization (p. 493). Germany: Springer.Google Scholar
  51. Wiencke, C., & Clayton, M. N. (2002). Antarctic seaweeds. In J. W. Wagele (Ed.), Synopses of the Antarctic benthos (p. 239). Germany: Lichtensein.Google Scholar
  52. Wiencke C, Amsler CD, Clayton MN (2014) Macroalgae. De Broyer C, Koubbi P, Griffiths HJ, Raymond B, Udekemd’Acoz CD Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, UK, 66–73.Google Scholar
  53. Zuccaro, A., Schulz, B., & Mitchell, J. I. (2003). Molecular detection of ascomycetes associated with Fucus serratus. Mycological Research, 107, 1451–1466.CrossRefGoogle Scholar
  54. Zucconi, L., Selbmann, L., Buzzini, P., Turchetti, B., Guglielmin, M., Frisvad, J. C., & Onofri, S. (2012). Searching for eukaryotic life preserved in Antarctic permafrost. Polar Biology, 35, 749–757.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mayara B. Ogaki
    • 1
  • Maria T. de Paula
    • 1
  • Daniele Ruas
    • 1
  • Franciane M. Pellizzari
    • 2
  • César X. García-Laviña
    • 3
  • Luiz H. Rosa
    • 1
    Email author
  1. 1.Departamento de MicrobiologiaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Department of Biological SciencesParaná State UniversityParanaguáBrazil
  3. 3.Biochemistry and Molecular Biology, Faculty of SciencesUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations