Advertisement

Role of Cyanobacteria in the Ecology of Polar Environments

  • Marc W. Van Goethem
  • Don A. CowanEmail author
Chapter
Part of the Springer Polar Sciences book series (SPPS)

Abstract

Cyanobacteria are the dominant living features of Antarctic terrestrial environments. They have the capacity to directly influence components of the cryosphere including nutrient acquisition, soil stabilisation and driving soil community structure. This book chapter incorporates recent literature to discuss how gradients of cyanobacterial abundance and diversity across Antarctic soil and lithic biotopes influence local biogeochemical cycling regimes, drive community structure and enhance primary productivity. Most recent studies have gleaned novel insights into the ecological importance of Antarctic cyanobacteria by applying so-called multi-‘omics’ technologies. While these breakthroughs have undoubtedly improved our understanding of metabolic potential in polar niches; cultivation-based analyses of cyanobacteria should be leveraged to gain perspectives into actual physiological attributes and morphological variation within Antarctica. Combined, these studies show that members of the cyanobacteria are critical carbon and nitrogen regulators and are essential for making nutrients available to associated community members.

Keywords

Cyanobacteria Carbon biogeochemical cycling Nitrogen biogeochemical cycling Primary production Interactions in cryptic niches 

Notes

Acknowledgements

The authors thank the University of Pretoria and the South African National Research Foundation (NRF) for continued financial support of our research programmes.

References

  1. Adams, B. J., et al. (2006). Diversity and distribution of Victoria Land biota. Soil Biology and Biochemistry, 38, 3003–3018.  https://doi.org/10.1016/j.soilbio.2006.04.030.CrossRefGoogle Scholar
  2. Anesio, A. M., Hodson, A. J., Fritz, A., Psenner, R., & Sattler, B. (2009). High microbial activity on glaciers: Importance to the global carbon cycle. Global Change Biology, 15, 955–960.CrossRefGoogle Scholar
  3. Bahl, J., et al. (2011). Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nature Communications, 2, 163.  https://doi.org/10.1038/ncomms1167.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Banerjee, M., & Verma, V. (2009). Nitrogen fixation in endolithic cyanobacterial communities of the McMurdo Dry Valley, Antarctica. Science Asia, 35, 215–219.CrossRefGoogle Scholar
  5. Baqué, M., Viaggiu, E., Scalzi, G., & Billi, D. (2013). Endurance of the endolithic desert cyanobacterium Chroococcidiopsis under UVC radiation. Extremophiles: Life Under Extreme Conditions, 17, 161–169.CrossRefGoogle Scholar
  6. Barrow, C. (1992). World atlas of desertification (United Nations Environment Program). London: Edward Arnold.Google Scholar
  7. Belnap, J., & Gardner, J. S. (1993). Soil microstructure in soils of the Colorado plateau: The role of the cyanobacterium Microcoleus vaginatus. The Great Basin Naturalist, 53, 40–47.Google Scholar
  8. Benhua, S., et al. (2014). Biogeochemical responses to nutrient, moisture and temperature manipulations of soil from Signy Island, South Orkney Islands in the Maritime Antarctic. Antarctic Science, 26, 513–520.CrossRefGoogle Scholar
  9. Bergman, B., Gallon, J., Rai, A., & Stal, L. (1997). N2 fixation by non-heterocystous cyanobacteria1. FEMS Microbiology Reviews, 19, 139–185.CrossRefGoogle Scholar
  10. Bintanja, R., van Oldenborgh, G., Drijfhout, S., Wouters, B., & Katsman, C. (2013). Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nature Geoscience, 6, 376.CrossRefGoogle Scholar
  11. Blank, C., & Sanchez-Baracaldo, P. (2010). Timing of morphological and ecological innovations in the cyanobacteria–a key to understanding the rise in atmospheric oxygen. Geobiology, 8, 1–23.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Boison, G., Mergel, A., Jolkver, H., & Bothe, H. (2004). Bacterial life and dinitrogen fixation at a gypsum rock. Applied and Environmental Microbiology, 70, 7070–7077.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bottos, E. M., Woo, A. C., Zawar-Reza, P., Pointing, S. B., & Cary, S. C. (2014). Airborne bacterial populations above desert soils of the McMurdo Dry Valleys, Antarctica. Microbial Ecology, 67, 120–128.  https://doi.org/10.1007/s00248-013-0296-y.CrossRefPubMedGoogle Scholar
  14. Bromwich, D. H., et al. (2013). Central West Antarctica among the most rapidly warming regions on earth. Nature Geoscience, 6, 139.CrossRefGoogle Scholar
  15. Büdel, B., Bendix, J., Bicker, F. R., & Allan Green, T. (2008). Dewfall as a water source frequently activates the endolithic cyanobacterial communities in the granites of Taylor Valley, Antarctica. Journal of Phycology, 44, 1415–1424.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Büdel, B., Schulz, B., Reichenberger, H., Bicker, F., & Green, T. (2009). Cryptoendolithic cyanobacteria from calcite marble rock ridges, Taylor Valley, Antarctica. Algological Studies, 129, 61–69.CrossRefGoogle Scholar
  17. Burgess, B. K., & Lowe, D. J. (1996). Mechanism of molybdenum nitrogenase. Chemical Reviews, 96, 2983–3012.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Büsch, A., Friedrich, B., & Cramm, R. (2002). Characterization of the norB gene, encoding nitric oxide reductase, in the nondenitrifying cyanobacterium Synechocystis sp. strain PCC6803. Applied and Environmental Microbiology, 68, 668–672.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cameron, R. E., King, J., & David, C. N. (1970). Microbiology, ecology and microclimatology of soil sites in Dry Valleys of Southern Victoria Land, Antarctica.Google Scholar
  20. Cary, S. C., McDonald, I. R., Barrett, J. E., & Cowan, D. A. (2010). On the rocks: The microbiology of Antarctic Dry Valley soils. Nature Reviews Microbiology, 8, 129–138.  https://doi.org/10.1038/nrmicro2281.CrossRefPubMedGoogle Scholar
  21. Chan, Y., et al. (2012). Hypolithic microbial communities: Between a rock and a hard place. Environmental Microbiology, 14, 2272–2282.  https://doi.org/10.1111/j.1462-2920.2012.02821.x.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Chan, Y., van Nostrand, J. D., Zhou, J., Pointing, S. B., & Farrell, R. L. (2013). Functional ecology of an Antarctic dry valley. Proceedings of the National Academy of Sciences, 110, 8990–8995.CrossRefGoogle Scholar
  23. Chen, J., et al. (2015). Stronger warming effects on microbial abundances in colder regions. Scientific Reports, 5, 18032.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chrismas, N. A., Anesio, A. M., & Sánchez-Baracaldo, P. (2018). The future of genomics in polar and alpine cyanobacteria. FEMS Microbiology Ecology, 94, fiy032.PubMedCentralCrossRefGoogle Scholar
  25. Cockell, C. S., & Stokes, M. D. (2004). Ecology: Widespread colonization by polar hypoliths. Nature, 431, 414–414.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Cook, A., Fox, A., Vaughan, D., & Ferrigno, J. (2005). Retreating glacier fronts on the Antarctic peninsula over the past half-century. Science, 308, 541–544.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Cowan, D. A., & Ah Tow, L. (2004). Endangered antarctic environments. Annual Review of Microbiology, 58, 649–690.  https://doi.org/10.1146/annurev.micro.57.030502.090811.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Cowan, D. A., & Makhalanyane, T. P. (2017). Energy from thin air. Nature, 552, 336.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Cowan, D. A., Khan, N., Pointing, S. B., & Cary, S. C. (2010). Diverse hypolithic refuge communities in the McMurdo Dry Valleys. Antarctic Science, 22, 714–720.CrossRefGoogle Scholar
  30. Cowan, D. A., et al. (2011a). Hypolithic communities: Important nitrogen sources in Antarctic desert soils. Environmental Microbiology Reports, 3, 581–586.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Cowan, D. A., et al. (2011b). Distribution and abiotic influences on hypolithic microbial communities in an Antarctic Dry Valley. Polar Biology, 34, 307–311.CrossRefGoogle Scholar
  32. Cowan, D. A., Makhalanyane, T. P., Dennis, P. G., & Hopkins, D. W. (2014). Microbial ecology and biogeochemistry of continental Antarctic soils. Frontiers in Microbiology, 5, 154.  https://doi.org/10.3389/fmicb.2014.00154.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Cowan, D., Ramond, J., Makhalanyane, T., & De Maayer, P. (2015). Metagenomics of extreme environments. Current Opinion in Microbiology, 25, 97–102.PubMedCrossRefGoogle Scholar
  34. De la Torre, J. R., Goebel, B. M., Friedmann, E. I., & Pace, N. R. (2003). Microbial diversity of Cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Applied and Environmental Microbiology, 69, 3858–3867.  https://doi.org/10.1128/aem.69.7.3858-3867.2003.PubMedPubMedCentralCrossRefGoogle Scholar
  35. de los Ríos, A., Wierzchos, J., Sancho, L. G., & Ascaso, C. (2004). Exploring the physiological state of continental Antarctic endolithic microorganisms by microscopy. FEMS Microbiology Ecology, 50, 143–152.CrossRefGoogle Scholar
  36. De Los Ríos, A., Grube, M., Sancho, L. G., & Ascaso, C. (2007). Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiology Ecology, 59, 386–395.CrossRefGoogle Scholar
  37. De los Ríos, A., Cary, C., & Cowan, D. (2014a). The spatial structures of hypolithic communities in the Dry Valleys of East Antarctica. Polar Biology.  https://doi.org/10.1007/s00300-014-1564-0.CrossRefGoogle Scholar
  38. De Los Ríos, A., Wierzchos, J., & Ascaso, C. (2014b). The lithic microbial ecosystems of Antarctica’s McMurdo Dry Valleys. Antarctic Science, 26, 459–477.CrossRefGoogle Scholar
  39. de Scally, S., Makhalanyane, T., Frossard, A., Hogg, I., & Cowan, D. (2016). Antarctic microbial communities are functionally redundant, adapted and resistant to short term temperature perturbations. Soil Biology and Biochemistry, 103, 160–170.CrossRefGoogle Scholar
  40. Delgado-Baquerizo, M., et al. (2018). A global atlas of the dominant bacteria found in soil. Science, 359, 320–325.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Fierer, N., et al. (2012). Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences, 109, 21390–21395.CrossRefGoogle Scholar
  42. Fortner, S. K., Tranter, M., Fountain, A., Lyons, W. B., & Welch, K. A. (2005). The geochemistry of supraglacial streams of Canada Glacier, Taylor Valley (Antarctica), and their evolution into proglacial waters. Aquatic Geochemistry, 11, 391–412.CrossRefGoogle Scholar
  43. Freckman, D. W., & Virginia, R. A. (1997). Low-diversity antarctic soil nematode communities: Distribution and responce to disturbance. Ecology, 78, 363–369.CrossRefGoogle Scholar
  44. Friedmann, E. I. (1982). Endolithic microorganisms in the Antarctic cold desert. Science, 215, 1045–1053.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Friedmann, E. I., & Ocampo, R. (1976). Endolithic blue-green algae in the dry valleys: Primary producers in the Antarctic desert ecosystem. Science, 193, 1247–1249.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Friedmann, E. I., Hua, M., & Ocampo-Friedmann, R. (1988). 3.6 Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, Antarctica. Polarforschung, 58, 251–259.PubMedPubMedCentralGoogle Scholar
  47. Fyfe, J. C., & Saenko, O. A. (2006). Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophysical Research Letters, 33, L06701.Google Scholar
  48. Geyer, K. M., Takacs-Vesbach, C. D., Gooseff, M. N., & Barrett, J. E. (2017). Primary productivity as a control over soil microbial diversity along environmental gradients in a polar desert ecosystem. PeerJ, 5, e3377.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Golden, S. S., Johnson, C. H., & Kondo, T. (1998). The cyanobacterial circadian system: A clock apart. Current Opinion in Microbiology, 1, 669–673.PubMedCrossRefGoogle Scholar
  50. Golubic, S., Friedmann, I., & Schneider, J. (1981). The lithobiontic ecological niche, with special reference to microorganisms. Journal of Sedimentary Research, 51.Google Scholar
  51. Hopkins, D., et al. (2006). Carbon, nitrogen and temperature controls on microbial activity in soils from an Antarctic dry valley. Soil Biology and Biochemistry, 38, 3130–3140.CrossRefGoogle Scholar
  52. Hopkins, D. W., et al. (2009). Isotopic evidence for the provenance and turnover of organic carbon by soil microorganisms in the Antarctic dry valleys. Environmental Microbiology, 11, 597–608.  https://doi.org/10.1111/j.1462-2920.2008.01830.x.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Howard, J. B., & Rees, D. C. (1996). Structural basis of biological nitrogen fixation. Chemical Reviews, 96, 2965–2982.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Huang, L., McCluskey, M. P., Ni, H., & Larossa, R. A. (2002). Global gene expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to irradiation with UV-B and white light. Journal of Bacteriology, 184, 6845–6858.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hughes, K. A., & Lawley, B. (2003). A novel Antarctic microbial endolithic community within gypsum crusts. Environmental Microbiology, 5, 555–565.PubMedCrossRefGoogle Scholar
  56. Hultman, J., et al. (2015). Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature, 521, 208–212.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Hutchins, P. R., & Miller, S. R. (2017). Genomics of variation in nitrogen fixation activity in a population of the thermophilic cyanobacterium Mastigocladus laminosus. The ISME Journal, 11, 78–86.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Ji, M., et al. (2017). Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature, 552, 400.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Khan, N., et al. (2011). Hypolithic microbial communities of quartz rocks from Miers Valley, McMurdo Dry Valleys, Antarctica. Polar Biology, 34, 1657–1668.  https://doi.org/10.1007/s00300-011-1061-7.CrossRefGoogle Scholar
  60. Kirtman, B., et al. (2013). Near-term climate change: Projections and predictability.Google Scholar
  61. Kobayashi, D., Tamoi, M., Iwaki, T., Shigeoka, S., & Wadano, A. (2003). Molecular characterization and redox regulation of phosphoribulokinase from the cyanobacterium Synechococcus sp. PCC 7942. Plant and Cell Physiology, 44, 269–276.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Komárek, J., Genuário, D. B., Fiore, M. F., & Elster, J. (2015). Heterocytous cyanobacteria of the Ulu Peninsula, James Ross Island, Antarctica. Polar Biology, 38, 475–492.CrossRefGoogle Scholar
  63. Latysheva, N., Junker, V. L., Palmer, W. J., Codd, G. A., & Barker, D. (2012). The evolution of nitrogen fixation in cyanobacteria. Bioinformatics, 28, 603–606.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Laybourn-Parry, J., Tranter, M., & Hodson, A. J. (2012). The ecology of snow and ice environments. Oxford: Oxford University Press.CrossRefGoogle Scholar
  65. Ligtenberg, S., van de Berg, W., van den Broeke, M., Rae, J., & van Meijgaard, E. (2013). Future surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate model. Climate Dynamics, 41, 867–884.CrossRefGoogle Scholar
  66. Magalhães, C. M., Machado, A., Frank-Fahle, B., Lee, C. K., & Cary, S. C. (2014). The ecological dichotomy of ammonia-oxidizing archaea and bacteria in the hyper-arid soils of the Antarctic Dry Valleys. Frontiers in Microbiology, 5, 515.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Makhalanyane, T. P., et al. (2013a). Evidence for successional development in Antarctic hypolithic bacterial communities. The ISME Journal, 7, 2080–2090.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Makhalanyane, T. P., et al. (2013b). Evidence of species recruitment and development of hot desert hypolithic communities. Environmental Microbiology Reports, 5, 219–224.  https://doi.org/10.1111/1758-2229.12003.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Makhalanyane, T. P., Pointing, S. B., & Cowan, D. A. (2014). Antarctic terrestrial microbiology (pp. 163–179). Berlin: Springer.CrossRefGoogle Scholar
  70. Makhalanyane, T. P., et al. (2015). Ecology and biogeochemistry of cyanobacteria in soils, permafrost, aquatic and cryptic polar habitats. Biodiversity and Conservation, 24, 819–840.  https://doi.org/10.1007/s10531-015-0902-z.CrossRefGoogle Scholar
  71. Makhalanyane, T. P., van Goethem, M. W., & Cowan, D. A. (2016). Microbial diversity and functional capacity in polar soils. Current Opinion in Biotechnology, 38, 159–166.  https://doi.org/10.1016/j.copbio.2016.01.011.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Marsden, W., & Codd, G. (1984). Purification and molecular and catalytic properties of phosphoribulokinase from the cyanobacterium Chlorogloeopsis fritschii. Microbiology, 130, 999–1006.CrossRefGoogle Scholar
  73. Marsden, W., Lanaras, T., & Codd, G. (1984). Subcellular segregation of phosphoribulokinase and ribulose-1, 5-bisphosphate carboxylase/oxygenase in the cyanobacterium Chlorogloeopsis fritschii. Microbiology, 130, 2089–2093.CrossRefGoogle Scholar
  74. Matsumoto, G. I., Hirai, A., Hirota, K., & Watanuki, K. (1990). Organic geochemistry of the McMurdo dry valleys soil, Antarctica. Organic Geochemistry, 16, 781–791.CrossRefGoogle Scholar
  75. Meeks, J. C., et al. (2001). An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynthesis Research, 70, 85–106.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Mergelov, N., Goryachkin, S., Shorkunov, I., Zazovskaya, E., & Cherkinsky, A. (2012). Endolithic pedogenesis and rock varnish on massive crystalline rocks in East Antarctica. Eurasian Soil Science, 45, 901–917.CrossRefGoogle Scholar
  77. Mills, L. S., Soulé, M. E., & Doak, D. F. (1993). The keystone-species concept in ecology and conservation. Bioscience, 43, 219–224.CrossRefGoogle Scholar
  78. Moorhead, D. L., Barrett, J. E., Virginia, R. A., Wall, D. H., & Porazinska, D. (2003). Organic matter and soil biota of upland wetlands in Taylor Valley, Antarctica. Polar Biology, 26, 567–576.CrossRefGoogle Scholar
  79. Niederberger, T. D., et al. (2012). Diverse and highly active diazotrophic assemblages inhabit ephemerally wetted soils of the Antarctic Dry Valleys. FEMS Microbiology Ecology, 82, 376–390.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Niederberger, T. D., et al. (2015a). Carbon-fixation rates and associated microbial communities residing in arid and ephemerally wet Antarctic Dry Valley soils. Frontiers in Microbiology, 6, 9.PubMedPubMedCentralGoogle Scholar
  81. Niederberger, T. D., et al. (2015b). Microbial community composition of transiently wetted Antarctic Dry Valley soils. Frontiers in Microbiology, 6, 9.PubMedPubMedCentralGoogle Scholar
  82. Novis, P. M., et al. (2007). Annual carbon fixation in terrestrial populations of Nostoc commune (Cyanobacteria) from an Antarctic dry valley is driven by temperature regime. Global Change Biology, 13, 1224–1237.CrossRefGoogle Scholar
  83. Paerl, H. W., Pinckney, J. L., & Steppe, T. F. (2000). Cyanobacterial–bacterial mat consortia: Examining the functional unit of microbial survival and growth in extreme environments. Environmental Microbiology, 2, 11–26.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Palmer, R. J., & Friedmann, E. I. (1990). Water relations and photosynthesis in the cryptoendolithic microbial habitat of hot and cold deserts. Microbial Ecology, 19, 111–118.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Parks, D. H., et al. (2017). Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nature Microbiology, 2, 1533.PubMedCrossRefGoogle Scholar
  86. Philippot, L., et al. (2013). Loss in microbial diversity affects nitrogen cycling in soil. The ISME Journal, 7, 1609.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Pointing, S. B. (2016). Biological soil crusts: An organizing principle in drylands (pp. 199–213). Cham: Springer.CrossRefGoogle Scholar
  88. Pointing, S. B., et al. (2009). Highly specialized microbial diversity in hyper-arid polar desert. Proceedings of the National Academy of Sciences of the United States of America, 106, 19964–19969.  https://doi.org/10.1073/pnas.0908274106.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Pointing, S. B., Bollard-Breen, B., & Gillman, L. N. (2014). Diverse cryptic refuges for life during glaciation. Proceedings of the National Academy of Sciences, 111, 5452–5453.CrossRefGoogle Scholar
  90. Poly, F., Monrozier, L. J., & Bally, R. (2001). Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Research in Microbiology, 152, 95–103.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Pringault, O., & Garcia-Pichel, F. (2004). Hydrotaxis of cyanobacteria in desert crusts. Microbial Ecology, 47, 366–373.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Rhodes, M., et al. (2013). The prokaryotes (pp. 43–55). Berlin: Springer.CrossRefGoogle Scholar
  93. Romanovsky, V. E., Smith, S. L., & Christiansen, H. H. (2010). Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007–2009: A synthesis. Permafrost and Periglacial Processes, 21, 106–116.CrossRefGoogle Scholar
  94. Russell, N., Edwards, H., & Wynn-Williams, D. (1998). FT-Raman spectroscopic analysis of endolithic microbial communities from Beacon sandstone in Victoria Land, Antarctica. Antarctic Science, 10, 63–74.CrossRefGoogle Scholar
  95. Scherer, S., Almon, H., & Böger, P. (1988). Interaction of photosynthesis, respiration and nitrogen fixation in cyanobacteria. Photosynthesis Research, 15, 95–114.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Schirrmeister, B. E., Sanchez-Baracaldo, P., & Wacey, D. (2016). Cyanobacterial evolution during the Precambrian. International Journal of Astrobiology, 15, 187–204.CrossRefGoogle Scholar
  97. Schlesinger, W. H., et al. (2003). Community composition and photosynthesis by photoautotrophs under quartz pebbles, southern Mojave Desert. Ecology, 84, 3222–3231.CrossRefGoogle Scholar
  98. Serra, J. L., Llama, M. J., Rowell, P., & Stewart, W. D. (1989). Purification and characterization of phosphoribulokinase from the N2-fixing cyanobacterium Anabaena cylindrica. Plant Science, 59, 1–9.CrossRefGoogle Scholar
  99. Siebert, J., et al. (1996). Cryptoendolithic microorganisms from Antarctic sandstone of Linnaeus Terrace (Asgard Range): Diversity, properties and interactions. Biodiversity and Conservation, 5, 1337–1363.CrossRefGoogle Scholar
  100. Stal, L. J. (1995). Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytologist, 131, 1–32.CrossRefGoogle Scholar
  101. Stibal, M., Šabacká, M., & Žárský, J. (2012). Biological processes on glacier and ice sheet surfaces. Nature Geoscience, 5, 771.CrossRefGoogle Scholar
  102. Tahon, G., Tytgat, B., Stragier, P., & Willems, A. (2016). Analysis of cbbL, nifH, and pufLM in soils from the Sør Rondane Mountains, Antarctica, reveals a large diversity of autotrophic and phototrophic bacteria. Microbial Ecology, 71, 131–149.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Thomas, C. M., & Nielsen, K. M. (2005). Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nature Reviews Microbiology, 3, 711–721.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Turner, J., et al. (2005). Antarctic climate change during the last 50 years. International Journal of Climatology, 25, 279–294.CrossRefGoogle Scholar
  105. Turner, J., et al. (2016). Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 535, 411.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Valverde, A., Makhalanyane, T. P., Seely, M., & Cowan, D. A. (2015). Cyanobacteria drive community composition and functionality in rock–soil interface communities. Molecular Ecology, 24, 812–821.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Van Goethem, M. W., Makhalanyane, T. P., Valverde, A., Cary, S. C., & Cowan, D. A. (2016). Characterization of bacterial communities in lithobionts and soil niches from Victoria Valley, Antarctica. FEMS Microbiology Ecology, 92, fiw051.PubMedCrossRefPubMedCentralGoogle Scholar
  108. Van Goethem, M. W., Makhalanyane, T. P., Cowan, D. A., & Valverde, A. (2017). Cyanobacteria and Alphaproteobacteria May Facilitate Cooperative Interactions in Niche Communities. Frontiers in Microbiology.  https://doi.org/10.3389/fmicb.2017.02099.
  109. van Horn, D. J., et al. (2013). Factors controlling soil microbial biomass and bacterial diversity and community composition in a Cold Desert ecosystem: Role of geographic scale. PLoS One, 8, e66103.  https://doi.org/10.1371/journal.pone.0066103.CrossRefPubMedPubMedCentralGoogle Scholar
  110. Varin, T., Lovejoy, C., Jungblut, A. D., Vincent, W. F., & Corbeil, J. (2012). Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic. Applied and Environmental Microbiology, 78, 549–559.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Vishniac, H. (1993). The microbiology of Antarctic soils. Antarctic Microbiology, 297–341.Google Scholar
  112. Wada, E., Shibata, R., & Torii, T. (1981). 15N abundance in Antarctica: Origin of soil nitrogen and ecological implications. Nature, 292, 327.CrossRefGoogle Scholar
  113. Walvoord, M. A., et al. (2003). A reservoir of nitrate beneath desert soils. Science, 302, 1021–1024.PubMedCrossRefPubMedCentralGoogle Scholar
  114. Wei, S. T., et al. (2015a). Diverse metabolic and stress-tolerance pathways in chasmoendolithic and soil communities of Miers Valley, McMurdo Dry Valleys, Antarctica. Polar Biology, 38, 433–443.CrossRefGoogle Scholar
  115. Wei, S. T., Higgins, C. M., Adriaenssens, E. M., Cowan, D. A., & Pointing, S. B. (2015b). Genetic signatures indicate widespread antibiotic resistance and phage infection in microbial communities of the McMurdo Dry Valleys, East Antarctica. Polar Biology, 38, 919–925.CrossRefGoogle Scholar
  116. Wierzchos, J., de los Ríos, A., & Ascaso, C. (2013). Microorganisms in desert rocks: The edge of life on earth. International Microbiology, 15, 172–182.Google Scholar
  117. Williams, T. J., et al. (2013). The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environmental Microbiology, 15, 1302–1317.PubMedCrossRefPubMedCentralGoogle Scholar
  118. Wong, F. K., et al. (2010). Hypolithic microbial community of quartz pavement in the high-altitude tundra of central Tibet. Microbial Ecology, 60, 730–739.  https://doi.org/10.1007/s00248-010-9653-2.CrossRefPubMedPubMedCentralGoogle Scholar
  119. Wood, S. A., Rueckert, A., Cowan, D. A., & Cary, S. C. (2008). Sources of edaphic cyanobacterial diversity in the Dry Valleys of Eastern Antarctica. The ISME Journal, 2, 308–320.  https://doi.org/10.1038/ismej.2007.104.CrossRefPubMedGoogle Scholar
  120. Wynn-Williams, D. D. (1991). Aerobiology and colonization in Antarctica—the BIOTAS Programme. Grana, 30, 380–393.CrossRefGoogle Scholar
  121. Wynn-Williams, D. (1996). Antarctic microbial diversity: The basis of polar ecosystem processes. Biodiversity and Conservation, 5, 1271–1293.CrossRefGoogle Scholar
  122. Xie, M., et al. (2016). Metagenomic analysis reveals symbiotic relationship among bacteria in microcystis-dominated community. Frontiers in Microbiology, 7, 56.PubMedPubMedCentralGoogle Scholar
  123. Yergeau, E., et al. (2009). Environmental microarray analyses of Antarctic soil microbial communities. The ISME Journal, 3, 340.PubMedCrossRefPubMedCentralGoogle Scholar
  124. Yung, C. C., et al. (2014). Characterization of Chasmoendolithic Community in Miers Valley, McMurdo Dry Valleys, Antarctica. Microbial Ecology, 68, 351–359.  https://doi.org/10.1007/s00248-014-0412-7.CrossRefPubMedPubMedCentralGoogle Scholar
  125. Zhang, L., et al. (2015). Cyanobacterial diversity in benthic mats of the McMurdo Dry Valley lakes, Antarctica. Polar Biology, 38, 1097–1110.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations