Advertisement

miRNAs as Modulators of EGFR Therapy in Colorectal Cancer

  • Diane M. Pereira
  • Cecília M. P. RodriguesEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1110)

Abstract

Drug resistance is a serious impediment to the treatment of cancer. The use of anti-epidermal growth factor receptor (EGFR) monoclonal antibody therapies in patients with metastatic colorectal cancer is guided by the presence of activating point mutations in KRAS and NRAS genes in the primary tumour. However, RAS wild-type status is still not sufficient to guarantee response to cetuximab and panitumumab, with response rates limited to 70% for combinations with multidrug chemotherapy. Therefore, additional mechanisms contributing to resistance are currently under investigation, and include genetic alterations and epigenetic mechanisms of resistance. In this regard, deregulation of miRNA expression profiles holds potential to unveil resistance and fuel the development of miRNA-based strategies to overcome EGFR-directed therapy limitations. We discuss current understanding of miRNA impact as modulators of EGFR therapy in patients with metastatic colorectal cancer and the future challenge of miRNAs in circulation as powerful non-invasive tools to monitor anti-EGFR therapy response and predict resistance.

Keywords

Anti-EGFR therapy Epidermal growth factor receptor Prognostic marker miRNA Therapy resistance 

References

  1. Adem BF, Bastos NR, Dias F, Teixeira AL, Medeiros R (2016) miRNAs: mediators of ErbB family targeted therapy resistance. Pharmacogenomics 17(10):1175–1187.  https://doi.org/10.2217/pgs-2016-0038 CrossRefPubMedGoogle Scholar
  2. Akao Y, Nakagawa Y, Naoe T (2006a) let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 29(5):903–906.  https://doi.org/10.1248/bpb.29.903 CrossRefPubMedGoogle Scholar
  3. Akao Y, Nakagawa Y, Naoe T (2006b) MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancers. Oncol Rep 16(4):845–850.  https://doi.org/10.3892/or.16.4.845 CrossRefPubMedGoogle Scholar
  4. Alam KJ, Mo JS, Han SH, Park WC, Kim HS, Yun KJ, Chae SC (2017) MicroRNA 375 regulates proliferation and migration of colon cancer cells by suppressing the CTGF-EGFR signaling pathway. Int J Cancer 141(8):1614–1629.  https://doi.org/10.1002/ijc.30861 CrossRefPubMedGoogle Scholar
  5. Allen KE, Weiss GJ (2010) Resistance may not be futile: microRNA biomarkers for chemoresistance and potential therapeutics. Mol Cancer Ther 9(12):3126–3136.  https://doi.org/10.1158/1535-7163.MCT-10-0397 CrossRefPubMedGoogle Scholar
  6. Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, Juan T, Sikorski R et al (2008) Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 26(10):1626–1634.  https://doi.org/10.1200/JCO.2007.14.7116 CrossRefPubMedGoogle Scholar
  7. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 108(12):5003–5008.  https://doi.org/10.1073/pnas.1019055108 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bardelli A, Siena S (2010) Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J Clin Oncol 28(7):1254–1261.  https://doi.org/10.1200/JCO.2009.24.6116 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bardelli A, Corso S, Bertotti A, Hobor S, Valtorta E, Siravegna G, Sartore-Bianchi A, Scala E et al (2013) Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer. Cancer Discov 3(6):658–673.  https://doi.org/10.1158/2159-8290.CD-12-0558 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297.  https://doi.org/10.1016/S0092-8674(04)00045-5 CrossRefPubMedGoogle Scholar
  11. Biswas S, Rao CM (2017) Epigenetics in cancer: fundamentals and beyond. Pharmacol Ther 173:118–134.  https://doi.org/10.1016/j.pharmthera.2017.02.011 CrossRefPubMedGoogle Scholar
  12. Boisen MK, Dehlendorff C, Linnemann D, Nielsen BS, Larsen JS, Osterlind K, Nielsen SE, Tarpgaard LS et al (2014) Tissue microRNAs as predictors of outcome in patients with metastatic colorectal cancer treated with first line Capecitabine and Oxaliplatin with or without Bevacizumab. PLoS One 9(10):e109430.  https://doi.org/10.1371/journal.pone.0109430 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bokemeyer C, Bondarenko I, Makhson A, Hartmann JT, Aparicio J, de Braud F, Donea S, Ludwig H et al (2009) Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol 27(5):663–671.  https://doi.org/10.1200/JCO.2008.20.8397 CrossRefPubMedGoogle Scholar
  14. Cappuzzo F, Sacconi A, Landi L, Ludovini V, Biagioni F, D’Incecco A, Capodanno A, Salvini J et al. (2014) MicroRNA signature in metastatic colorectal cancer patients treated with anti-EGFR monoclonal antibodies. Clin Colorectal Cancer 13(1):37–45 e34. doi:  https://doi.org/10.1016/j.clcc.2013.11.006 CrossRefGoogle Scholar
  15. Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee SS (2017) Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids 8:132–143.  https://doi.org/10.1016/j.omtn.2017.06.005 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chao CC, Wu PH, Huang HC, Chung HY, Chou YC, Cai BH, Kannagi R (2017) Downregulation of miR-199a/b-5p is associated with GCNT2 induction upon epithelial-mesenchymal transition in colon cancer. FEBS Lett 591(13):1902–1917.  https://doi.org/10.1002/1873-3468.12685 CrossRefPubMedGoogle Scholar
  17. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997–1006.  https://doi.org/10.1038/cr.2008.282 CrossRefPubMedGoogle Scholar
  18. Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y, Cai X, Wang K et al (2009) Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene 28(10):1385–1392.  https://doi.org/10.1038/onc.2008.474 CrossRefPubMedGoogle Scholar
  19. Chen J, Wang W, Zhang Y, Chen Y, Hu T (2014a) Predicting distant metastasis and chemoresistance using plasma miRNAs. Med Oncol 31(1):799.  https://doi.org/10.1007/s12032-013-0799-x CrossRefPubMedGoogle Scholar
  20. Chen P, Xi Q, Wang Q, Wei P (2014b) Downregulation of microRNA-100 correlates with tumor progression and poor prognosis in colorectal cancer. Med Oncol 31(10):235.  https://doi.org/10.1007/s12032-014-0235-x CrossRefPubMedGoogle Scholar
  21. Chou YT, Lin HH, Lien YC, Wang YH, Hong CF, Kao YR, Lin SC, Chang YC et al (2010) EGFR promotes lung tumorigenesis by activating miR-7 through a Ras/ERK/Myc pathway that targets the Ets2 transcriptional repressor ERF. Cancer Res 70(21):8822–8831.  https://doi.org/10.1158/0008-5472.CAN-10-0638 CrossRefPubMedGoogle Scholar
  22. Cohenuram M, Saif MW (2007) Panitumumab the first fully human monoclonal antibody: from the bench to the clinic. Anti-Cancer Drugs 18(1):7–15.  https://doi.org/10.1097/CAD.0b013e32800feecb CrossRefPubMedGoogle Scholar
  23. Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, Bets D, Mueser M et al (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351(4):337–345.  https://doi.org/10.1056/NEJMoa033025 CrossRefPubMedGoogle Scholar
  24. De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G, Kalogeras KT, Kotoula V et al (2010a) Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 11(8):753–762.  https://doi.org/10.1016/S1470-2045(10)70130-3 CrossRefPubMedGoogle Scholar
  25. De Roock W, Jonker DJ, Di Nicolantonio F, Sartore-Bianchi A, Tu D, Siena S, Lamba S, Arena S et al (2010b) Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA 304(16):1812–1820.  https://doi.org/10.1001/jama.2010.1535 CrossRefPubMedGoogle Scholar
  26. Della Vittoria Scarpati G, Falcetta F, Carlomagno C, Ubezio P, Marchini S, De Stefano A, Singh VK, D’Incalci M et al (2012) A specific miRNA signature correlates with complete pathological response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Int J Radiat Oncol Biol Phys 83(4):1113–1119.  https://doi.org/10.1016/j.ijrobp.2011.09.030 CrossRefPubMedGoogle Scholar
  27. Douillard JY, Siena S, Cassidy J, Tabernero J, Burkes R, Barugel M, Humblet Y, Bodoky G et al (2010) Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol 28(31):4697–4705.  https://doi.org/10.1200/JCO.2009.27.4860 CrossRefPubMedGoogle Scholar
  28. Douillard JY, Oliner KS, Siena S, Tabernero J, Burkes R, Barugel M, Humblet Y, Bodoky G et al (2013) Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 369(11):1023–1034.  https://doi.org/10.1056/NEJMoa1305275 CrossRefPubMedGoogle Scholar
  29. Earle JS, Luthra R, Romans A, Abraham R, Ensor J, Yao H, Hamilton SR (2010) Association of microRNA expression with microsatellite instability status in colorectal adenocarcinoma. J Mol Diagn 12(4):433–440.  https://doi.org/10.2353/jmoldx.2010.090154 CrossRefPubMedPubMedCentralGoogle Scholar
  30. El Sharawy A, Roder C, Becker T, Habermann JK, Schreiber S, Rosenstiel P, Kalthoff H (2016) Concentration of circulating miRNA-containing particles in serum enhances miRNA detection and reflects CRC tissue-related deregulations. Oncotarget 7(46):75353–75365.  https://doi.org/10.18632/oncotarget.12205 CrossRefGoogle Scholar
  31. Ferracin M, Negrini M (2015) Micromarkers 2.0: an update on the role of microRNAs in cancer diagnosis and prognosis. Expert Rev Mol Diagn 15(10):1369–1381.  https://doi.org/10.1586/14737159.2015.1081058 CrossRefPubMedGoogle Scholar
  32. Frattini M, Saletti P, Romagnani E, Martin V, Molinari F, Ghisletta M, Camponovo A, Etienne LL et al (2007) PTEN loss of expression predicts cetuximab efficacy in metastatic colorectal cancer patients. Br J Cancer 97(8):1139–1145.  https://doi.org/10.1038/sj.bjc.6604009 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105.  https://doi.org/10.1101/gr.082701.108 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Garofalo M, Romano G, Di Leva G, Nuovo G, Jeon YJ, Ngankeu A, Sun J, Lovat F et al (2011) EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med 18(1):74–82.  https://doi.org/10.1038/nm.2577 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gomes SE, Simoes AE, Pereira DM, Castro RE, Rodrigues CM, Borralho PM (2016) miR-143 or miR-145 overexpression increases cetuximab-mediated antibody-dependent cellular cytotoxicity in human colon cancer cells. Oncotarget 7(8):9368–9387.  https://doi.org/10.18632/oncotarget.7010 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gong C, Yao Y, Wang Y, Liu B, Wu W, Chen J, Su F, Yao H et al (2011) Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer. J Biol Chem 286(21):19127–19137.  https://doi.org/10.1074/jbc.M110.216887 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hanke M, Hoefig K, Merz H, Feller AC, Kausch I, Jocham D, Warnecke JM, Sczakiel G (2010) A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol 28(6):655–661.  https://doi.org/10.1016/j.urolonc.2009.01.027 CrossRefGoogle Scholar
  38. Harding J, Burtness B (2005) Cetuximab: an epidermal growth factor receptor chemeric human-murine monoclonal antibody. Drugs Today (Barc) 41(2):107–127.  https://doi.org/10.1358/dot.2005.41.2.882662 CrossRefGoogle Scholar
  39. Heinemann V, Rivera F, O’Neil BH, Stintzing S, Koukakis R, Terwey JH, Douillard JY (2016) A study-level meta-analysis of efficacy data from head-to-head first-line trials of epidermal growth factor receptor inhibitors versus bevacizumab in patients with RAS wild-type metastatic colorectal cancer. Eur J Cancer 67:11–20.  https://doi.org/10.1016/j.ejca.2016.07.019 CrossRefGoogle Scholar
  40. Hu T, Li C (2010) Convergence between Wnt-beta-catenin and EGFR signaling in cancer. Mol Cancer 9:236.  https://doi.org/10.1186/1476-4598-9-236 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hunter MP, Ismail N, Zhang X, Aguda BD, Lee EJ, Yu L, Xiao T, Schafer J et al (2008) Detection of microRNA expression in human peripheral blood microvesicles. PLoS One 3(11):e3694.  https://doi.org/10.1371/journal.pone.0003694 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Ibrahim AF, Weirauch U, Thomas M, Grunweller A, Hartmann RK, Aigner A (2011) MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res 71(15):5214–5224.  https://doi.org/10.1158/0008-5472.CAN-10-4645 CrossRefPubMedGoogle Scholar
  43. Igarashi H, Kurihara H, Mitsuhashi K, Ito M, Okuda H, Kanno S, Naito T, Yoshii S et al (2015) Association of microRNA-31-5p with clinical efficacy of anti-EGFR therapy in patients with metastatic colorectal cancer. Ann Surg Oncol 22(8):2640–2648.  https://doi.org/10.1245/s10434-014-4264-7 CrossRefPubMedGoogle Scholar
  44. Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, Tu D, Tebbutt NC, Simes RJ, Chalchal H et al (2008) K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 359(17):1757–1765.  https://doi.org/10.1056/NEJMoa0804385 CrossRefPubMedGoogle Scholar
  45. Kedmi M, Sas-Chen A, Yarden Y (2015) MicroRNAs and growth factors: an Alliance propelling tumor progression. J Clin Med 4(8):1578–1599.  https://doi.org/10.3390/jcm4081578 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kent OA, Chivukula RR, Mullendore M, Wentzel EA, Feldmann G, Lee KH, Liu S, Leach SD et al (2010) Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes Dev 24(24):2754–2759.  https://doi.org/10.1101/gad.1950610 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kent OA, Fox-Talbot K, Halushka MK (2013) RREB1 repressed miR-143/145 modulates KRAS signaling through downregulation of multiple targets. Oncogene 32(20):2576–2585.  https://doi.org/10.1038/onc.2012.266 CrossRefPubMedGoogle Scholar
  48. Kimura H, Sakai K, Arao T, Shimoyama T, Tamura T, Nishio K (2007) Antibody-dependent cellular cytotoxicity of cetuximab against tumor cells with wild-type or mutant epidermal growth factor receptor. Cancer Sci 98(8):1275–1280.  https://doi.org/10.1111/j.1349-7006.2007.00510.x CrossRefPubMedGoogle Scholar
  49. Kjersem JB, Ikdahl T, Lingjaerde OC, Guren T, Tveit KM, Kure EH (2014) Plasma microRNAs predicting clinical outcome in metastatic colorectal cancer patients receiving first-line oxaliplatin-based treatment. Mol Oncol 8(1):59–67.  https://doi.org/10.1016/j.molonc.2013.09.001 CrossRefPubMedGoogle Scholar
  50. Kopp F, Wagner E, Roidl A (2014) The proto-oncogene KRAS is targeted by miR-200c. Oncotarget 5(1):185–195.  https://doi.org/10.18632/oncotarget.1427 CrossRefPubMedGoogle Scholar
  51. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11(9):597–610.  https://doi.org/10.1038/nrg2843 CrossRefPubMedGoogle Scholar
  52. Lam JK, Chow MY, Zhang Y, Leung SW (2015) siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids 4:e252.  https://doi.org/10.1038/mtna.2015.23 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lanza G, Ferracin M, Gafa R, Veronese A, Spizzo R, Pichiorri F, Liu CG, Calin GA et al (2007) mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Mol Cancer 6:54.  https://doi.org/10.1186/1476-4598-6-54 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134.  https://doi.org/10.1016/j.cell.2010.06.011 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Lievre A, Bachet JB, Le Corre D, Boige V, Landi B, Emile JF, Cote JF, Tomasic G et al (2006) KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 66(8):3992–3995.  https://doi.org/10.1158/0008-5472.CAN-06-0191 CrossRefPubMedGoogle Scholar
  56. Lin S, Gregory RI (2015) MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 15(6):321–333.  https://doi.org/10.1038/nrc3932 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Lu Y, Zhao X, Liu Q, Li C, Graves-Deal R, Cao Z, Singh B, Franklin JL et al (2017) lncRNA MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance via Wnt/beta-catenin signaling. Nat Med 23(11):1331–1341.  https://doi.org/10.1038/nm.4424 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Luraghi P, Bigatto V, Cipriano E, Reato G, Orzan F, Sassi F, De Bacco F, Isella C et al (2018) A molecularly annotated model of patient-derived colon cancer stem-like cells to assess genetic and nongenetic mechanisms of resistance to anti-EGFR therapy. Clin Cancer Res 24(4):807–820.  https://doi.org/10.1158/1078-0432.CCR-17-2151 CrossRefPubMedGoogle Scholar
  59. Manceau G, Imbeaud S, Thiebaut R, Liebaert F, Fontaine K, Rousseau F, Genin B, Le Corre D et al (2014) Hsa-miR-31-3p expression is linked to progression-free survival in patients with KRAS wild-type metastatic colorectal cancer treated with anti-EGFR therapy. Clin Cancer Res 20(12):3338–3347.  https://doi.org/10.1158/1078-0432.CCR-13-2750 CrossRefPubMedGoogle Scholar
  60. Martinelli E, De Palma R, Orditura M, De Vita F, Ciardiello F (2009) Anti-epidermal growth factor receptor monoclonal antibodies in cancer therapy. Clin Exp Immunol 158(1):1–9.  https://doi.org/10.1111/j.1365-2249.2009.03992.x CrossRefPubMedPubMedCentralGoogle Scholar
  61. Mekenkamp LJ, Tol J, Dijkstra JR, de Krijger I, Vink-Borger ME, van Vliet S, Teerenstra S, Kamping E et al (2012) Beyond KRAS mutation status: influence of KRAS copy number status and microRNAs on clinical outcome to cetuximab in metastatic colorectal cancer patients. BMC Cancer 12:292.  https://doi.org/10.1186/1471-2407-12-292 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Mellor JD, Brown MP, Irving HR, Zalcberg JR, Dobrovic A (2013) A critical review of the role of Fc gamma receptor polymorphisms in the response to monoclonal antibodies in cancer. J Hematol Oncol 6:1.  https://doi.org/10.1186/1756-8722-6-1 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Migliore C, Giordano S (2013) Resistance to targeted therapies: a role for microRNAs? Trends Mol Med 19(10):633–642.  https://doi.org/10.1016/j.molmed.2013.08.002 CrossRefPubMedGoogle Scholar
  64. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105(30):10513–10518.  https://doi.org/10.1073/pnas.0804549105 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Mlcochova J, Faltejskova P, Nemecek R, Svoboda M, Slaby O (2013) MicroRNAs targeting EGFR signalling pathway in colorectal cancer. J Cancer Res Clin Oncol 139(10):1615–1624.  https://doi.org/10.1007/s00432-013-1470-9 CrossRefPubMedGoogle Scholar
  66. Mlcochova J, Faltejskova-Vychytilova P, Ferracin M, Zagatti B, Radova L, Svoboda M, Nemecek R, John S et al (2015) MicroRNA expression profiling identifies miR-31-5p/3p as associated with time to progression in wild-type RAS metastatic colorectal cancer treated with cetuximab. Oncotarget 6(36):38695–38704.  https://doi.org/10.18632/oncotarget.5735 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Mosakhani N, Lahti L, Borze I, Karjalainen-Lindsberg ML, Sundstrom J, Ristamaki R, Osterlund P, Knuutila S et al (2012a) MicroRNA profiling predicts survival in anti-EGFR treated chemorefractory metastatic colorectal cancer patients with wild-type KRAS and BRAF. Cancer Genet 205(11):545–551.  https://doi.org/10.1016/j.cancergen.2012.08.003 CrossRefPubMedGoogle Scholar
  68. Mosakhani N, Sarhadi VK, Borze I, Karjalainen-Lindsberg ML, Sundstrom J, Ristamaki R, Osterlund P, Knuutila S (2012b) MicroRNA profiling differentiates colorectal cancer according to KRAS status. Genes Chromosom Cancer 51(1):1–9.  https://doi.org/10.1002/gcc.20925 CrossRefPubMedGoogle Scholar
  69. Mussnich P, Rosa R, Bianco R, Fusco A, D’Angelo D (2015) MiR-199a-5p and miR-375 affect colon cancer cell sensitivity to cetuximab by targeting PHLPP1. Expert Opin Ther Targets 19(8):1017–1026.  https://doi.org/10.1517/14728222.2015.1057569 CrossRefPubMedGoogle Scholar
  70. Nakagawa Y, Akao Y, Taniguchi K, Kamatani A, Tahara T, Kamano T, Nakano N, Komura N et al (2015) Relationship between expression of onco-related miRNAs and the endoscopic appearance of colorectal tumors. Int J Mol Sci 16(1):1526–1543.  https://doi.org/10.3390/ijms16011526 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Oberg AL, French AJ, Sarver AL, Subramanian S, Morlan BW, Riska SM, Borralho PM, Cunningham JM et al (2011) miRNA expression in colon polyps provides evidence for a multihit model of colon cancer. PLoS One 6(6):e20465.  https://doi.org/10.1371/journal.pone.0020465 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Pagliuca A, Valvo C, Fabrizi E, di Martino S, Biffoni M, Runci D, Forte S, De Maria R et al (2013) Analysis of the combined action of miR-143 and miR-145 on oncogenic pathways in colorectal cancer cells reveals a coordinate program of gene repression. Oncogene 32(40):4806–4813.  https://doi.org/10.1038/onc.2012.495 CrossRefPubMedGoogle Scholar
  73. Park NJ, Zhou H, Elashoff D, Henson BS, Kastratovic DA, Abemayor E, Wong DT (2009) Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res 15(17):5473–5477.  https://doi.org/10.1158/1078-0432.CCR-09-0736 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13(4):271–282.  https://doi.org/10.1038/nrg3162 CrossRefPubMedGoogle Scholar
  75. Pekow JR, Dougherty U, Mustafi R, Zhu H, Kocherginsky M, Rubin DT, Hanauer SB, Hart J et al (2012) miR-143 and miR-145 are downregulated in ulcerative colitis: putative regulators of inflammation and protooncogenes. Inflamm Bowel Dis 18(1):94–100.  https://doi.org/10.1002/ibd.21742 CrossRefPubMedGoogle Scholar
  76. Pereira DM, Rodrigues PM, Borralho PM, Rodrigues CM (2013) Delivering the promise of miRNA cancer therapeutics. Drug Discov Today 18(5–6):282–289.  https://doi.org/10.1016/j.drudis.2012.10.002 CrossRefPubMedGoogle Scholar
  77. Perkins G, Pilati C, Blons H, Laurent-Puig P (2014) Beyond KRAS status and response to anti-EGFR therapy in metastatic colorectal cancer. Pharmacogenomics 15(7):1043–1052.  https://doi.org/10.2217/pgs.14.66 CrossRefPubMedGoogle Scholar
  78. Pichler M, Winter E, Ress AL, Bauernhofer T, Gerger A, Kiesslich T, Lax S, Samonigg H et al (2014) miR-181a is associated with poor clinical outcome in patients with colorectal cancer treated with EGFR inhibitor. J Clin Pathol 67(3):198–203.  https://doi.org/10.1136/jclinpath-2013-201904 CrossRefPubMedGoogle Scholar
  79. Price T, Kim TW, Li J, Cascinu S, Ruff P, Suresh AS, Thomas A, Tjulandin S et al (2016) Final results and outcomes by prior bevacizumab exposure, skin toxicity, and hypomagnesaemia from ASPECCT: randomized phase 3 non-inferiority study of panitumumab versus cetuximab in chemorefractory wild-type KRAS exon 2 metastatic colorectal cancer. Eur J Cancer 68:51–59.  https://doi.org/10.1016/j.ejca.2016.08.010 CrossRefPubMedGoogle Scholar
  80. Pugh S, Thiebaut R, Bridgewater J, Grisoni ML, Moutasim K, Rousseau F, Thomas GJ, Griffiths G et al (2017) Association between miR-31-3p expression and cetuximab efficacy in patients with KRAS wild-type metastatic colorectal cancer: a post-hoc analysis of the New EPOC trial. Oncotarget 8(55):93856–93866.  https://doi.org/10.18632/oncotarget.21291 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Ragusa M, Majorana A, Statello L, Maugeri M, Salito L, Barbagallo D, Guglielmino MR, Duro LR et al (2010) Specific alterations of microRNA transcriptome and global network structure in colorectal carcinoma after cetuximab treatment. Mol Cancer Ther 9(12):3396–3409.  https://doi.org/10.1158/1535-7163.MCT-10-0137 CrossRefPubMedGoogle Scholar
  82. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16(3):203–222.  https://doi.org/10.1038/nrd.2016.246 CrossRefPubMedGoogle Scholar
  83. Rupaimoole R, Calin GA, Lopez-Berestein G, Sood AK (2016) miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discov 6(3):235–246.  https://doi.org/10.1158/2159-8290.CD-15-0893 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Ruzzo A, Graziano F, Vincenzi B, Canestrari E, Perrone G, Galluccio N, Catalano V, Loupakis F et al (2012) High let-7a microRNA levels in KRAS-mutated colorectal carcinomas may rescue anti-EGFR therapy effects in patients with chemotherapy-refractory metastatic disease. Oncologist 17(6):823–829.  https://doi.org/10.1634/theoncologist.2012-0081 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Salgia R, Kulkarni P (2018) The genetic/non-genetic duality of drug ‘Resistance’ in cancer. Trends Cancer 4(2):110–118.  https://doi.org/10.1016/j.trecan.2018.01.001 CrossRefPubMedGoogle Scholar
  86. Sartore-Bianchi A, Martini M, Molinari F, Veronese S, Nichelatti M, Artale S, Di Nicolantonio F, Saletti P et al (2009) PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. Cancer Res 69(5):1851–1857.  https://doi.org/10.1158/0008-5472.CAN-08-2466 CrossRefPubMedGoogle Scholar
  87. Sarver AL, French AJ, Borralho PM, Thayanithy V, Oberg AL, Silverstein KA, Morlan BW, Riska SM et al (2009) Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states. BMC Cancer 9:401.  https://doi.org/10.1186/1471-2407-9-401 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Schepeler T, Reinert JT, Ostenfeld MS, Christensen LL, Silahtaroglu AN, Dyrskjot L, Wiuf C, Sorensen FJ et al (2008) Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Res 68(15):6416–6424.  https://doi.org/10.1158/0008-5472.CAN-07-6110 CrossRefPubMedGoogle Scholar
  89. Schetter AJ, Okayama H, Harris CC (2012) The role of microRNAs in colorectal cancer. Cancer J 18(3):244–252.  https://doi.org/10.1097/PPO.0b013e318258b78f CrossRefPubMedPubMedCentralGoogle Scholar
  90. Schou JV, Rossi S, Jensen BV, Nielsen DL, Pfeiffer P, Hogdall E, Yilmaz M, Tejpar S et al (2014) miR-345 in metastatic colorectal cancer: a non-invasive biomarker for clinical outcome in non-KRAS mutant patients treated with 3rd line cetuximab and irinotecan. PLoS One 9(6):e99886.  https://doi.org/10.1371/journal.pone.0099886 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Schwarzenbach H, Nishida N, Calin GA, Pantel K (2014) Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol 11(3):145–156.  https://doi.org/10.1038/nrclinonc.2014.5 CrossRefPubMedGoogle Scholar
  92. Sethupathy P, Collins FS (2008) MicroRNA target site polymorphisms and human disease. Trends Genet 24(10):489–497.  https://doi.org/10.1016/j.tig.2008.07.004 CrossRefPubMedGoogle Scholar
  93. Seviour EG, Sehgal V, Mishra D, Rupaimoole R, Rodriguez-Aguayo C, Lopez-Berestein G, Lee JS, Sood AK et al (2017) Targeting KRas-dependent tumour growth, circulating tumour cells and metastasis in vivo by clinically significant miR-193a-3p. Oncogene 36(10):1339–1350.  https://doi.org/10.1038/onc.2016.308 CrossRefPubMedGoogle Scholar
  94. Sha D, Lee AM, Shi Q, Alberts SR, Sargent DJ, Sinicrope FA, Diasio RB (2014) Association study of the let-7 miRNA-complementary site variant in the 3′ untranslated region of the KRAS gene in stage III colon cancer (NCCTG N0147 Clinical Trial). Clin Cancer Res 20(12):3319–3327.  https://doi.org/10.1158/1078-0432.CCR-14-0069 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Shigeyasu K, Toden S, Zumwalt TJ, Okugawa Y, Goel A (2017) Emerging role of microRNAs as liquid biopsy biomarkers in gastrointestinal cancers. Clin Cancer Res 23(10):2391–2399.  https://doi.org/10.1158/1078-0432.CCR-16-1676 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Slattery ML, Wolff E, Hoffman MD, Pellatt DF, Milash B, Wolff RK (2011) MicroRNAs and colon and rectal cancer: differential expression by tumor location and subtype. Genes Chromosomes Cancer 50(3):196–206.  https://doi.org/10.1002/gcc.20844 CrossRefPubMedGoogle Scholar
  97. Slattery ML, Herrick JS, Mullany LE, Wolff E, Hoffman MD, Pellatt DF, Stevens JR, Wolff RK (2016a) Colorectal tumor molecular phenotype and miRNA: expression profiles and prognosis. Mod Pathol 29(8):915–927.  https://doi.org/10.1038/modpathol.2016.73 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Slattery ML, Herrick JS, Pellatt DF, Stevens JR, Mullany LE, Wolff E, Hoffman MD, Samowitz WS et al (2016b) MicroRNA profiles in colorectal carcinomas, adenomas and normal colonic mucosa: variations in miRNA expression and disease progression. Carcinogenesis 37(3):245–261.  https://doi.org/10.1093/carcin/bgv249 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Spano JP, Lagorce C, Atlan D, Milano G, Domont J, Benamouzig R, Attar A, Benichou J et al (2005) Impact of EGFR expression on colorectal cancer patient prognosis and survival. Ann Oncol 16(1):102–108.  https://doi.org/10.1093/annonc/mdi006 CrossRefPubMedGoogle Scholar
  100. Stintzing S, Modest DP, Rossius L, Lerch MM, von Weikersthal LF, Decker T, Kiani A, Vehling-Kaiser U et al (2016) FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab for metastatic colorectal cancer (FIRE-3): a post-hoc analysis of tumour dynamics in the final RAS wild-type subgroup of this randomised open-label phase 3 trial. Lancet Oncol 17(10):1426–1434.  https://doi.org/10.1016/S1470-2045(16)30269-8 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Sun Y, Wang M, Lin G, Sun S, Li X, Qi J, Li J (2012) Serum microRNA-155 as a potential biomarker to track disease in breast cancer. PLoS One 7(10):e47003.  https://doi.org/10.1371/journal.pone.0047003 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Suto T, Yokobori T, Yajima R, Morita H, Fujii T, Yamaguchi S, Altan B, Tsutsumi S et al (2015) MicroRNA-7 expression in colorectal cancer is associated with poor prognosis and regulates cetuximab sensitivity via EGFR regulation. Carcinogenesis 36(3):338–345.  https://doi.org/10.1093/carcin/bgu242 CrossRefPubMedGoogle Scholar
  103. Svoboda M, Sana J, Fabian P, Kocakova I, Gombosova J, Nekvindova J, Radova L, Vyzula R et al (2012) MicroRNA expression profile associated with response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer patients. Radiat Oncol 7:195.  https://doi.org/10.1186/1748-717X-7-195 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Svoronos AA, Engelman DM, Slack FJ (2016) OncomiR or tumor suppressor? the duplicity of microRNAs in cancer. Cancer Res 76(13):3666–3670.  https://doi.org/10.1158/0008-5472.CAN-16-0359 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Takahashi H, Takahashi M, Ohnuma S, Unno M, Yoshino Y, Ouchi K, Takahashi S, Yamada Y et al (2017) microRNA-193a-3p is specifically down-regulated and acts as a tumor suppressor in BRAF-mutated colorectal cancer. BMC Cancer 17(1):723.  https://doi.org/10.1186/s12885-017-3739-x CrossRefPubMedPubMedCentralGoogle Scholar
  106. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659.  https://doi.org/10.1038/ncb1596 CrossRefGoogle Scholar
  107. Van Cutsem E, Peeters M, Siena S, Humblet Y, Hendlisz A, Neyns B, Canon JL, Van Laethem JL et al (2007) Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol 25(13):1658–1664.  https://doi.org/10.1200/JCO.2006.08.1620 CrossRefPubMedGoogle Scholar
  108. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13(4):423–433.  https://doi.org/10.1038/ncb2210 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Vidigal JA, Ventura A (2015) The biological functions of miRNAs: lessons from in vivo studies. Trends Cell Biol 25(3):137–147.  https://doi.org/10.1016/j.tcb.2014.11.004 CrossRefPubMedGoogle Scholar
  110. Wang Y, Tang Q, Li M, Jiang S, Wang X (2014) MicroRNA-375 inhibits colorectal cancer growth by targeting PIK3CA. Biochem Biophys Res Commun 444(2):199–204.  https://doi.org/10.1016/j.bbrc.2014.01.028 CrossRefPubMedGoogle Scholar
  111. Waring P, Tie J, Maru D, Karapetis CS (2016) RAS mutations as predictive biomarkers in clinical management of metastatic colorectal cancer. Clin Colorectal Cancer 15(2):95–103.  https://doi.org/10.1016/j.clcc.2015.10.006 CrossRefPubMedGoogle Scholar
  112. Witsch E, Sela M, Yarden Y (2010) Roles for growth factors in cancer progression. Physiology (Bethesda) 25(2):85–101.  https://doi.org/10.1152/physiol.00045.2009 CrossRefGoogle Scholar
  113. Witwer KW (2015) Circulating microRNA biomarker studies: pitfalls and potential solutions. Clin Chem 61(1):56–63.  https://doi.org/10.1373/clinchem.2014.221341 CrossRefPubMedGoogle Scholar
  114. Xi Y, Nakajima G, Gavin E, Morris CG, Kudo K, Hayashi K, Ju J (2007) Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA 13(10):1668–1674.  https://doi.org/10.1261/rna.642907 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Zhang N, Li X, Wu CW, Dong Y, Cai M, Mok MT, Wang H, Chen J et al (2013) microRNA-7 is a novel inhibitor of YY1 contributing to colorectal tumorigenesis. Oncogene 32(42):5078–5088.  https://doi.org/10.1038/onc.2012.526 CrossRefPubMedGoogle Scholar
  116. Zhang J, Zhang K, Bi M, Jiao X, Zhang D, Dong Q (2014) Circulating microRNA expressions in colorectal cancer as predictors of response to chemotherapy. Anti-Cancer Drugs 25(3):346–352.  https://doi.org/10.1097/CAD.0000000000000049 CrossRefPubMedGoogle Scholar
  117. Zhang X, Ma X, An H, Xu C, Cao W, Yuan W, Ma J (2017) Upregulation of microRNA-125b by G-CSF promotes metastasis in colorectal cancer. Oncotarget 8(31):50642–50654.  https://doi.org/10.18632/oncotarget.16892 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Zhao B, Wang L, Qiu H, Zhang M, Sun L, Peng P, Yu Q, Yuan X (2017) Mechanisms of resistance to anti-EGFR therapy in colorectal cancer. Oncotarget 8(3):3980–4000.  https://doi.org/10.18632/oncotarget.14012 CrossRefPubMedPubMedCentralGoogle Scholar
  119. Zhou J, Lv L, Lin C, Hu G, Guo Y, Wu M, Tian B, Li X (2015) Combinational treatment with microRNA133b and cetuximab has increased inhibitory effects on the growth and invasion of colorectal cancer cells by regulating EGFR. Mol Med Rep 12(4):5407–5414.  https://doi.org/10.3892/mmr.2015.4046 CrossRefPubMedGoogle Scholar
  120. Zhu H, Dougherty U, Robinson V, Mustafi R, Pekow J, Kupfer S, Li YC, Hart J et al (2011) EGFR signals downregulate tumor suppressors miR-143 and miR-145 in Western diet-promoted murine colon cancer: role of G1 regulators. Mol Cancer Res 9(7):960–975.  https://doi.org/10.1158/1541-7786.MCR-10-0531 CrossRefPubMedGoogle Scholar
  121. Zhu Y, Peng Q, Lin Y, Zou L, Shen P, Chen F, Min M, Shen L et al (2017) Identification of biomarker microRNAs for predicting the response of colorectal cancer to neoadjuvant chemoradiotherapy based on microRNA regulatory network. Oncotarget 8(2):2233–2248.  https://doi.org/10.18632/oncotarget.13659 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Research Institute for Medicines (iMed.ULisboa), Faculty of PharmacyUniversidade de LisboaLisbonPortugal

Personalised recommendations