Advertisement

Space, Imagination, and Numbers in John Wyclif’s Mathematical Theology

  • Aurélien RobertEmail author
Chapter
Part of the Studies in History and Philosophy of Science book series (AUST, volume 48)

Abstract

The aim of this paper is to show that John Wyclif’s theory of space is at once an interpretation of the Platonic theory of place and a Neopythagorean conception of magnitudes and numbers. The result is an original form of mathematical atomism in which atoms are point-like entities with a particular situation in space. If the core of this view comes from Boethius’ De arithmetica, John Wyclif is also influenced by Robert Grosseteste’s metaphysics, which includes the Boethian number theory within the Christian tale of the creation of the world ex nihilo. John Wyclif, however, adds some novelty to this theory concerning the epistemological status of this hypothetical description of the creation of the world out of atoms. First, according to Wyclif, whereas geometry is concerned with sensible and imaginable beings, arithmetic, which is purely intellectual, has access to the deep mathematical structure of the universe. He then suggests a subordination of geometry under arithmetic, which he considers the most solid basis for his metaphysics. As a result, with the attribution of numbers and units to every level of reality, it becomes possible to reform our natural imagination, so that it can imagine the atomic structure of matter and space.

References

  1. Albertson, David. 2014. Mathematical Theologies: Nicholas of Cusa and the Legacy of Thierry of Chartres. Oxford: Oxford University Press.CrossRefGoogle Scholar
  2. Annas, Julia E. 1975. Aristotle, Number and Time. The Philosophical Quarterly 25: 97–113.CrossRefGoogle Scholar
  3. Bakker Paul, J.J.M., and Sander W. De Boer. 2009. Locus est spatium: On Gerald Odonis’ Quaestio de loco. Vivarium 47: 295–330.CrossRefGoogle Scholar
  4. Boethius. 1983. On Arithmetic. Trans. Michael M. In Boethian Number Theory: A Translation of the De institutione arithmetica. Amsterdam: Rodopi.Google Scholar
  5. Burkert, Walter. 1972. Lore and Science in Ancient Pythagoreanism. Harvard: Harvard University Press.Google Scholar
  6. Cesalli, Laurent. 2005. Le ‘pan-propositionnalisme’ de Jean Wyclif. Vivarium 43: 124–155.CrossRefGoogle Scholar
  7. Conti, Alessandro. 2006. Wyclif’s Logic and Metaphysics. In A Companion to John Wyclif, ed. Ian C. Levy, 67–125. Leiden: Brill.Google Scholar
  8. Cornelli, Gabriele. 2013. In Search of Pythagoreanism: Pythagoreanism as an Historiographical Category. Berlin: Walter de Gruyter.Google Scholar
  9. [Councils]. 1973. Conciliorum oecumenicorum decreta, ed. Giuseppe Alberigo et al., 3rd ed. Bologna: Istituto per le scienze religiose.Google Scholar
  10. Grant, Edward. 1976. Place and Space in Medieval Physical Thought. In Motion and Time, Space and Matter, ed. Peter K. Machamer and Robert G. Turnbull, 137–167. Columbus: Ohio State University Press.Google Scholar
  11. Horky, Phillip S. 2013. Plato and Pythagoreanism. Oxford: Oxford University Press.CrossRefGoogle Scholar
  12. John Wyclif. 1869. In Trialogus, ed. Gotthard V. Lechler. Oxford: Clarendon Press.Google Scholar
  13. ———. 1891. In De ente praedicamentali, ed. Rudolf Beer. London: Trübner for the Wyclif Society.Google Scholar
  14. ———. 1893–1899. Tractatus de logica. 3 vols., ed. Michael H. Dziewicki. London: Trübner for the Wyclif Society.Google Scholar
  15. ———. 2012. Trialogus. Trans Stephen Lahey. Cambridge, MA: Cambridge University Press.Google Scholar
  16. Kaluza, Zénon. 2003. La notion de matière et son évolution dans la doctrine wyclifienne. In John Wyclif: Logica, politica, teologia, ed. Mariateresa Fumagalli Beonio Brocchieri and Stefano Simonetta, 113–151. Florence: Edizioni del Galluzzo.Google Scholar
  17. King, Peter. 2004. The metaphysics of Peter Abelard. In The Cambridge companion to Abelard, ed. Jeff Brower and Kevin Guilfoy, 65–125. Cambridge: Cambridge University Press.Google Scholar
  18. Kirschner, Stefan. 2000. Oresme’s Concepts of Place, Space, and Time in His Commentary on Aristotle’s Physics. Oriens – Occidens: Sciences, mathématiques et philosophie de l’antiquité à l’âge classique 3: 145–179.Google Scholar
  19. Kretzmann, Norman. 1986. Continua, Indivisibles, and Change in Wyclif’s Logic of Scripture. In Wyclif in his Times, ed. Anthony Kenny, 31–65. Oxford: Clarendon Press.Google Scholar
  20. Lahey, S.E. 2009. John Wyclif. Oxford: Oxford University Press.CrossRefGoogle Scholar
  21. Levin, Flora R. 1975. The Harmonics of Nicomachus and the Pythagorean Tradition. University Park: American Philological Association.Google Scholar
  22. Levy, Ian C. 2003. John Wyclif: Scriptural Logic, Real Presence, and the Parameters of Orthodoxy. Milwaukee: Marquette University Press.Google Scholar
  23. Lewis, Neil. 2005. Robert Grosseteste and the Continuum. In Albertus Magnus and the Beginnings of the Medieval Reception of Aristotle in the Latin West, ed. Ludger Honnefelder, Rega Wood, Mechthild Dreyer, and Marc-Aeilko Aris, 159–187. Münster: Aschendorff.Google Scholar
  24. Lewis, Neil. 2013. Robert Grosseteste’s on light: An English translation. In Robert Grosseteste and his intellectual milieu, ed. John Flood, James R. Ginther, and Joseph W. Goering, 239–247. Toronto: Pontifical Institute of Mediaeval Studies.Google Scholar
  25. Maier, Anneliese. 1949. Kontinuum, Minimum und aktuell Unendliches. Die Vorläufer Galileis im 14. Jahrhundert, 155–215. Rome: Edizioni di Storia e Letteratura.Google Scholar
  26. Mendell, Henry. 1987. Topoi on Topos: The Development of Aristotle’s Theory of Place. Phronesis 32: 206–231.CrossRefGoogle Scholar
  27. Michael, Emily. 2009. John Wyclif’s Atomism. In Atomism in Late Medieval Philosophy and Theology, ed. Christophe Grellard and Aurélien Robert, 183–220. Leiden: Brill.Google Scholar
  28. Murdoch, John E. 1974. Naissance et développement de l’atomisme au bas moyen âge latin. In Cahiers d’études médiévales, 2: La science de la nature: Théories et pratiques, 11–32. Montreal: Bellarmine.Google Scholar
  29. ———. 1982. Infinity and Continuity. In The Cambridge History of Later Medieval Philosophy, ed. Norman Kretzmann, Anthony Kenny, and Jan Pinborg, 564–591. Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
  30. Panti, Cecilia. 2012. The Evolution of the Idea of Corporeity in Robert Grosseteste’s Writings. In Robert Grosseteste His Thought and Its Impact, ed. Jack P. Cunningham, 111–139. Toronto: Pontifical Institute of Mediaeval Studies.Google Scholar
  31. Philip, James A. 1966. The ‘Pythagorean’ Theory of the Derivation of Magnitudes. Phoenix 20: 32–50.CrossRefGoogle Scholar
  32. Proclus. 1970. A Commentary on the First Book of Euclid’s Elements. Trans. Glenn Morrow, with a foreword by Ian Mueller. Princeton: Princeton University Press.Google Scholar
  33. Robert, Aurélien. 2009. William Crathorn’s Mereotopological Atomism. In Atomism in Late Medieval Philosophy and Theology, ed. Christophe Grellard and Aurélien Robert, 127–162. Leiden: Brill.Google Scholar
  34. ———. 2012. Le vide, le lieu et l’espace chez quelques atomistes du XIVe siècle. In La nature et le vide dans la physique médiévale: Etudes dédiées à Edward Grant, ed. J. Biard and Sabine Rommevaux, 67–98. Turnhout: Brepols.CrossRefGoogle Scholar
  35. ———. 2017. Atomisme pythagoricien et espace géométrique au moyen âge. In Lieu, espace, mouvement: Physique, métaphysique et cosmologie (XII e–XVI esiècles), ed. Tiziana Suarez-Nani, Olivier Ribordy, and Antonio Petagine, 181–206. Turnhout: Brepols.CrossRefGoogle Scholar
  36. Robert Grosseteste. 1963. Commentarius in VIII libros physicorum Aristotelis, ed. Richard C. Dales. Boulder: University of Colorado Press.Google Scholar
  37. Robson, John A. 2008. Wyclif and the Oxford Schools: The Relation of the Summa de ente to Scholastic Debates at Oxford in the Later Fourteenth Century. Cambridge, MA: Cambridge University Press.Google Scholar
  38. Roques, Magali. 2016. Crathorn on Extension. Recherches de Théologie et Philosophie médiévales 83 (2): 423–467.Google Scholar
  39. Thomson, Williell R. 1983. The Latin Writings of John Wyclif. Toronto: The Pontifical Institute of Medieval Studies.Google Scholar
  40. Zhmud, Leonid J. 2012. Pythagoras and the Early Pythagoreans. Oxford: Oxford University Press.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Centre d’Études Supérieures de la RenaissanceCNRS, Université de ToursToursFrance

Personalised recommendations