Advertisement

The Bebras Contest in Austria – Do Personality, Self-concept and General Interests Play an Influential Role?

  • Andreas Bollin
  • Heike Demarle-Meusel
  • Max Kesselbacher
  • Corinna Mößlacher
  • Marianne Rohrer
  • Julia Sylle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11169)

Abstract

The Bebras (Beaver) contest aims at testing of and motivating for Informatics and Computer fluency, and as such it is designed to be a contest for all pupils between 8 and 19. But, does it really attract and favor all types of children likewise? This paper takes a closer look at different types of personality, self-concept and interests of the winners of the Bebras contest in Austria and discusses those factors that might contribute to a successful participation. It concludes with some recommendations that might help in increasing the number of participation at the event.

Keywords

Bebras contest Personality Self-concept 

Notes

Acknowledgement

We want to express our deepest thanks to all the participants of the study and to all the colleagues that helped us in gathering the data. A big Thank You goes to Max Kesselbacher for implementing (maintaining) the KAUA platform and for investing countless hours in dealing with the data used in this study.

References

  1. 1.
    Ackerman, P.L., Beier, M.E.: Intelligence, personality, and interests in the career choice process. J. Career Assess. 11(2), 205–218 (2003)CrossRefGoogle Scholar
  2. 2.
    AKSF: Kangourou Sans Frontieres. http://www.aksf.org/. Accessed 15 June 2018
  3. 3.
    Applebaum, M.: Spatial abilities as a predictor to success in the Kangaroo contest. J. Math. Syst. Sci. 7, 154 (2017)Google Scholar
  4. 4.
    Bebras Webpage - Publications. https://www.bebras.org/?q=publications. 06 Aug 2018
  5. 5.
    Bergmann, C., Eder, F.: AIST-R. Allgemeiner Interessen-Struktur-Test mit Umwelt-Struktur-Test (UST-R) - Revision. Manual. Hogrefe, 1 edn. (2005)Google Scholar
  6. 6.
    Cohen, J.: Differences between Correlation Coefficients. In: Cohen, J. (ed.) Statistical Power Analysis for the Behavioral Sciences, pp. 109–143. Academic Press (1977)Google Scholar
  7. 7.
    Dagienė, V., Futschek, G.: Bebras international contest on informatics and computer literacy: criteria for good tasks. In: Mittermeir, R.T., Sysło, M.M. (eds.) ISSEP 2008. LNCS, vol. 5090, pp. 19–30. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-69924-8_2CrossRefGoogle Scholar
  8. 8.
    Dawis, R.V.: Work adjustment theory and person-environment-congruence counselling. In: Brown, D., Brooks, L. (eds.) Career Choice and Development, pp. 75–120. Jossey-Bass Publishers (1996)Google Scholar
  9. 9.
    Grandl, M., Ebner, M.: Informatische Grundbildung - ein Ländervergleich (2017). https://www.medienimpulse.at/articles/view/1069. Accessed 15 June 2018
  10. 10.
    Holland, J.: Exploring careers with a typology - what we have learned and some new directions. Am. Psychol. 51(4), 397–406 (1996)CrossRefGoogle Scholar
  11. 11.
    Kunter, M., et al.: PISA 2000: Dokumentation der Erhebungsinstrumente. Materialien aus der Bildungsforschung, vol. 72 (2002)Google Scholar
  12. 12.
    Mujkanovic, A., Bollin, A.: Improving learning outcomes through systematic group reformation - the role of skills and personality in software engineering education. In: 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), pp. 97–103 (2016)Google Scholar
  13. 13.
    Nerdinger, F.W., Blickle, G., Schaper, N.: Arbeits- und Organisationspsychologie. Springer-Lehrbuch (2001)Google Scholar
  14. 14.
    OECD: Organisation For Economic Co-Operation And Development. PISA 2006: Naturwissenschaftliche Kompetenzen für die Welt von morgen. OECD Publishing, Paris and W. Bertelsmann Verlag, Germany (2008)Google Scholar
  15. 15.
    Theodoropoulos, A., Antoniou, A., Lepouras, G.: How do different cognitive styles affect learning programming? Insights from a game-based approach in greek schools. Trans. Comput. Educ. 17(1), 3:1–3:25 (2016).  https://doi.org/10.1145/2940330, http://doi.acm.org/10.1145/2940330CrossRefGoogle Scholar
  16. 16.
    Vaníček, J.: Bebras informatics contest: criteria for good tasks revised. In: Gülbahar, Y., Karataş, E. (eds.) ISSEP 2014. LNCS, vol. 8730, pp. 17–28. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-09958-3_3CrossRefGoogle Scholar
  17. 17.
    Yamada, Y., et al.: The impacts of personal characteristic on educational effectiveness in controlled-project based learning on software intensive systems development. In: 2014 IEEE 27th Conference on Software Engineering Education and Training (CSEE&T), pp. 119–128. IEEE, April 2014Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Andreas Bollin
    • 1
  • Heike Demarle-Meusel
    • 1
  • Max Kesselbacher
    • 1
  • Corinna Mößlacher
    • 1
  • Marianne Rohrer
    • 1
  • Julia Sylle
    • 1
  1. 1.Alpen-Adria-Universität KlagenfurtKlagenfurtAustria

Personalised recommendations