Advertisement

Immunotherapy for Precancerous Lesions of the Uterine Cervix

  • Samir A. Farghaly
Chapter

Abstract

The immunological milieu of premalignant lesions of the uterine cervix has not been sufficiently explored. The rationale for immunological approaches for the treatment of the premalignant lesions is as to prevent secondary premalignant lesions and their progression to cancer. Among the challenges of immunotherapeutic approaches for cancer are the multitudes of mechanisms by which cancers are known to subvert the immune defenses. Human papillomavirus (HPV) is known as a cause of uterine cervical cancer and cervical intraepithelial neoplasia (CIN). HPVs related to cancer express two main oncogenes, i.e., E6 and E7, considered as tumorigenic genes; their integration into the host genome results in the abnormal regulation of cell cycle control. Due to their molecular characteristics, these oncogenes represent a target for immunotherapy. The development of HPV-associated cancers depends on efficient negative regulation of cell cycle control that supports the accumulation of genetic damage and immune evasion that enables the virus to go undetected for a long time. Noting that HPV-related lesions and tumors usually present MHC class I down-regulation, impaired antigen-processing ability, avoidance of T-cell mediated killing, increased immunosuppression due to Treg infiltration and secrete immunosuppressive cytokines. This chapter focuses on the immunological aspects of premalignant lesions of the uterine cervix and highlights strategies for immunotherapy and several promising immunotherapy technologies.

Keywords

Uterine cervix Premalignant lesions of the uterine cervix HPV Immunological aspects of uterine cervical cancer Immunotherapy technologies of uterine cervical cancer 

References

  1. 1.
    Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12(4):278–87.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Perez SA, Karamouzis MV, Skarlos DV, Ardavanis A, Sotiriadou NN, Iliopoulou EG. CD4+CD25+ regulatory T-cell frequency in HER-2/neu (HER)-positive and HER-negative advanced-stage breast cancer patients. Clin Cancer Res. 2007;13(9):2714–21.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Park T, Choi CJ, Choi Y, Suh DC. Cost-effectiveness of cetuximab for colorectal cancer. Expert Rev Pharmacoecon Outcomes Res. 2016;16(6):667–77.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Gilbert MR, Pugh SL, Aldape K, Sorensen AG, Mikkelsen T, Penas-Prado M. NRG oncology RTOG 0625: a randomized phase II trial of bevacizumab with either irinotecan or dose-dense temozolomide in recurrent glioblastoma. J Neuro-Oncol. 2016;131:193–9.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Lee S, Margolin K. Cytokines in cancer immunotherapy. Cancers. 2011;3(4):3856–93.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    U.S., Food and Drug Administration. Intron A. Label information. http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/103132s5191lbl.pdf. 6 Apr 1986.
  7. 7.
    U.S., Food and Drug Administration. Aldesleukin product approval information – licensing action. http://www.fda.gov/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandApproved/ApprovalApplications/TherapeuticBiologicApplications/ucm080733.htm. 1 Sept 1998.
  8. 8.
    Scheid E, Major P, Bergeron A, Finn OJ, Salter RD, Eady R. Tn-MUC1 DC vaccination of rhesus macaques and a phase I/II trial of patients with non-metastatic castrate-resistant prostate cancer. Cancer Immunol Res. 2016;4(10):881–92.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Mittendorf EA, Ardavanis A, Litton JK, Shumway NM, Hale DF, Murray JL. Primary analysis of a prospective, randomized, single-blinded phase II trial evaluating the HER2 peptide GP2 vaccine in breast cancer patients to prevent recurrence. Oncotarget. 2016;7(40):66192–201.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Engelstein R, Merims S, Eisenberg G, Cohen J, Frank S, Hamburger T. Immune monitoring of patients treated with a whole-cell melanoma vaccine engineered to express 4-1BBL. J Immunother. 2016;39(8):321–8.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Courau T, Nehar-Belaid D, Florez L, Levacher B, Vazquez T, Brimaud F. TGF-β and VEGF cooperatively control the immunotolerant tumor environment and the efficacy of cancer immunotherapies. JCI Insight. 2016;1(9):e85974.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Rong L, Li R, Li S, Luo R. Immunosuppression of breast cancer cells mediated by transforming growth factor-β in exosomes from cancer cells. Oncol Lett. 2016;11(1):500–4.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Cui C, Feng H, Shi X, Wang Y, Feng Z, Liu J. Artesunate down-regulates immunosuppression from colorectal cancer Colon26 and RKO cells in vitro, by decreasing transforming growth factor β and interleukin-10. Int Immunopharmacol. 2015;27(1):110–21.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387(10030):1837–46.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Eberstal S, Sanden E, Fritzell S, Darabi A, Visse E, Siesjo P. Intratumoral COX-2 inhibition enhances GM-CSF immunotherapy against established mouse GL261 brain tumors. Int J Cancer. 2014;134(11):2748–53.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Mao Y, Poschke I, Wennerberg E, Pico de Coana Y, Egyhazi Brage S, Schultz I. Melanoma-educated CD14+ cells acquire a myeloid-derived suppressor cell phenotype through COX-2-dependent mechanisms. Cancer Res. 2013;73(13):3877–87.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Wang X, Wang L, Mo Q, Dong Y, Wang G, Ji A. Changes of Th17/Treg cell and related cytokines in pancreatic cancer patients. Int J Clin Exp Pathol. 2015;8(5):5702–8.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Yu GT, Bu LL, Huang CF, Zhang WF, Chen WJ, Gutkind JS. PD-1 blockade attenuates immunosuppressive myeloid cells due to inhibition of CD47/SIRPα axis in HPV negative head and neck squamous cell carcinoma. Oncotarget. 2015;6(39):42067–80.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Walsh JE, Clark AM, Day TA, Gillespie MB, Young MR. 3, treatment to stimulate immune infiltration into head and neck squamous cell carcinoma. Hum Immunol. 2010;71:659–65.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Li T, Yi S, Liu W, Jia C, Wang G, Hua X. Colorectal carcinoma-derived fibroblasts modulate natural killer cell phenotype and antitumor cytotoxicity. Med Oncol. 2013;30(3):663.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Mulligan JK, Young MR. Tumors induce the formation of suppressor endothelial cells in vivo. Cancer Immunol Immunother. 2010;59(2):267–77.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Benard VB, Castle PE, Jenison SA, Hunt WC, Kim JJ, Cuzick J. Population-based incidence rates of cervical intraepithelial neoplasia in the human papillomavirus vaccine era. JAMA Oncol. 2016;6:833–7.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Prue G, Lawler M, Baker P, Warnakulasuriya S. Human papillomavirus (HPV): making the case for ‘Immunisation for all’. Oral Dis. 2016;23:726–30.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Huber MA. Adjunctive diagnostic aids in oral cancer screening: an update. Tex Dent J. 2012;129(5):471–80.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Doubeni CA, Corley DA, Quinn VP, Jensen CD, Zauber AG, Goodman M. Effectiveness of screening colonoscopy in reducing the risk of death from right and left colon cancer: a large community-based study. Gut. 2016;67:291–8.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Rethman MP, Carpenter W, Cohen EE, Epstein J, Evans CA, Flaitz CM. Evidence-based clinical recommendations regarding screening for oral squamous cell carcinomas. Tex Dent J. 2012;129(5):491–507.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Saslow D, Solomon D, Lawson HW, Killackey M, Kulasingam SL, Cain J. American Cancer Society, American Society for Colposcopy and Cervical Pathology, and American Society for Clinical Pathology screening guidelines for the prevention and early detection of cervical cancer. Am J Clin Pathol. 2012;137(4):516–42.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Freeman A, Bridge JA, Maruthayanar P, Overgaard NH, Jung JW, Simpson F. Comparative immune phenotypic analysis of cutaneous squamous cell carcinoma and intraepidermal carcinoma in immune-competent individuals: proportional representation of CD8+ T-cells but not FoxP3+ regulatory T-cells is associated with disease stage. PLoS One. 2014;9(10):e110928.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Ohman J, Mowjood R, Larsson L, Kovacs A, Magnusson B, Kjeller G. T-cells in oral premalignant leukoplakia indicates prevention of cancer transformation. Anticancer Res. 2015;35(1):311–7.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Ohman J, Magnusson B, Telemo E, Jontell M, Hasseus B. Langerhans cells and T cells sense cell dysplasia in oral leukoplakias and oral squamous cell carcinomas – evidence for immunosurveillance. Scand J Immunol. 2012;76(1):39–48.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Woodford D, Johnson SD, De Costa A-MA, Young MRI. An inflammatory cytokine milieu is prominent in premalignant oral lesions, but subsides when lesions progress to squamous cell carcinoma. J Clin Cell Immunol. 2014;5(3):1–17.CrossRefGoogle Scholar
  32. 32.
    Kavanagh ME, Conroy MJ, Clarke NE, Gilmartin NT, Feighery R. Impact of the inflammatory microenvironment on T-cell phenotype in the progression from reflux oesophagitis to Barrett oesophagus and oesophageal adenocarcinoma. Cancer Lett. 2016;370(1):117–24.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Miyashita T, Tajima H, Shah FA, Oshima M, Makino I, Nakagawara H. Impact of inflammation-metaplasia-adenocarcinoma sequence and inflammatory microenvironment in esophageal carcinogenesis using surgical rat models. Ann Surg Oncol. 2014;21(6):2012–9.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Garay J, Piazuelo MB, Majumdar S, Li L, Trillo-Tinoco J, Del Valle L. Helicobacter pylori, and in development of mucous metaplasia in mice. Cancer Lett. 2016;371(1):90–8.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Lian J, Ma L, Yang J, Xu L. Aberrant gene expression profile of unaffected colon mucosa from patients with unifocal colon polyp. Med Sci Monit. 2015;21:3935–40.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Ben-Horin S, Izhaki Z, Haj-Natur O, Segev S, Eliakim R, Avidan B. Rarity of adenomatous polyps in ulcerative colitis and its implications for colonic carcinogenesis. Endoscopy. 2016;48(3):215–22.PubMedPubMedCentralGoogle Scholar
  37. 37.
    He Y, Zha J, Wang Y, Liu W, Yang X, Yu P. Tissue damage-associated “danger signals” influence T-cell responses that promote the progression of preneoplasia to cancer. Cancer Res. 2013;73(2):629–39.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Zhang B, Kwon OJ, Henry G, Malewska A, Wei X, Zhang L. Non-cell-autonomous regulation of prostate epithelial homeostasis by androgen receptor. Mol Cell. 2016;63(6):976–89.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Liou GY, Doppler H, Necela B, Edenfield B, Zhang L, Dawson DW. Mutant KRAS-induced expression of ICAM-1 in pancreatic acinar cells causes attraction of macrophages to expedite the formation of precancerous lesions. Cancer Discov. 2015;5(1):52–63.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    De Costa AM, Schuyler CA, Walker DD, Young MR. Characterization of the evolution of immune phenotype during the development and progression of squamous cell carcinoma of the head and neck. Cancer Immunol Immunother. 2011;61(6):927–39.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Johnson SD, De Costa AM, Young MR. Effect of the premalignant and tumor microenvironment on immune cell cytokine production in head and neck cancer. Cancers. 2014;6(2):756–70.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Hardikar S, Onstad L, Song X, Wilson AM, Montine TJ, Kratz M. Cancer Epidemiol Biomark Prev. 2014;23(11):2393–403.CrossRefGoogle Scholar
  43. 43.
    Juretic M, Cerovic R, Belusic-Gobic M, Brekalo Prso I, Kqiku L, Spalj S. Salivary levels of TNF-α and IL-6 in patients with oral premalignant and malignant lesions. Folia Biol. 2013;59(2):99–102.Google Scholar
  44. 44.
    Abbas AK, Lichtman AH, Pillai S. Basic immunology functions and disorders of the immune System. In: Cellular and molecular immunology. Philadelphia: Elsevier/Saunders; 2006.Google Scholar
  45. 45.
    Young MR, Levingston CA, Johnson SD. Treatment to sustain a Th17-type phenotype to prevent skewing toward Treg and to limit premalignant lesion progression to cancer. Int J Cancer. 2016;138(10):2487–98.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012;12:253–68.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Johnson SD, Young MR. Indomethacin treatment of mice with premalignant oral lesions sustains cytokine production and slows progression to cancer. Front Immunol. 2016;7:379.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Parham P. The immune system. 3rd ed. New York: Garland Science; 2009.Google Scholar
  49. 49.
    Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S. Innate or adaptive immunity? Example of natural killer cells. Science. 2011;331:44–9.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Yokoyama WM, Plougastel BF. Immune functions encoded by the natural killer gene complex. Nat Rev Immunol. 2003;3:304–16.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Jeannin P, Jaillon S, Delneste Y. Pattern recognition receptors in the immune response against dying cells. Curr Opin Immunol. 2008;20:530–7.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE, Bratton DL, Oldenborg PA, Michalak M, Henson PM. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell. 2005;123:321–34.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Hammes LS, Tekmal RR, Naud P, Edelweiss MI, Kirma N, Valente PT, Syrjanen KJ, Cunha-Filho JS. Macrophages, inammation and risk of cervical intraepithelial neoplasia (CIN) progression – clinicopathological correlation. Gynecol Oncol. 2007;105:157–65.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Kobayashi A, Weinberg V, Darragh T, Smith-McCune K. Evolving immunosuppressive microenvironment during human cervical carcinogenesis. Mucosal Immunol. 2008;1:412–20.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Ostrand-Rosenberg S. Immune surveillance: a balance between protumor and antitumor immunity. Curr Opin Genet Dev. 2008;18:11–8.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Montero AJ, Diaz-Montero CM, Kyriakopoulos CE, Bronte V, Mandruzzato S. Myeloid-derived suppressor cells in cancer patients: a clinical perspective. J Immunother. 2012;35:107–15.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Nelson BH. CD20(+) B cells: other tumor-infiltrating lymphocytes. J Immunol. 2010;185:4977–82.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    June CH, Bluestone JA, Nadler LM, Thompson CB. B7 and CD28 receptor families. Immunol Today. 1994;15:321–31.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Keene JA, Forman J. Helper activity is required for the in vivo generation of cytotoxic T lymphocytes. J Exp Med. 1982;155:768–82.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Bennett SR, Carbone FR, Karamalis F, Miller JF, Heath WR. Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J Exp Med. 1997;186:65–70.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Schoenberger SP, Toes RE, van der Voort EI, O’ringa R, Melief CJ. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature. 1998;393:480–3.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Zou W, Restifo NP. T(h)17 cells in tumour immunity and immunotherapy. Nat Rev Immunol. 2010;10:248–56.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Burnet M. Immunological factors in the process of carcinogenesis. Br Med Bull. 1964;20:154–8. ii general introduction 31PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Burnet M. Cancer; a biological approach. I. Processes of control. Br Med J. 1957;1:779–86.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Burnet FM. Concept of immunological surveillance. Prog Exp Tumor Res. 1970;13:1–27.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Boon T, Cerottini JC, van den Eynde B, van der Bruggen P, Van PA. Tumor antigens recognized by T lymphocytes. Annu Rev Immunol. 1994;12:337–65.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–8.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape. Immunology. 2007;121:1–14.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Pages F, Galon J, Dieu-Nosjean MC, Tartour E, Sautes-Fridman C, Fridman WH. Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene. 2010;29:1093–102.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313:1960–4.CrossRefGoogle Scholar
  71. 71.
    Donnem T, Hald SM, Paulsen EE, Richardsen E, Al-Saad S, Kilvaer TK, Brustugun OT, Helland A, Lund-Iversen M, Poehl M, et al. Stromal CD8(+) t-cell density-a promising supplement to TNM staging in non-small cell lung cancer. Clin Cancer Res. 2015;21:2635–43.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Ladanyi A, Sebestyen T, Balatoni T, Varga A, Olah J, Liszkay G. Tumor-infiltrating immune cells as potential biomarkers predicting response to treatment and survival in patients with metastatic melanoma receiving ipilimumab therapy. Eur J Cancer. 2015;51:S111–2.CrossRefGoogle Scholar
  73. 73.
    Piersma SJ, Jordanova ES, van Poelgeest MIE, Kwappenberg KMC, van der Hulst JM, Drij’out JW, Melief CJM, Kenter GG, Fleuren GJ, O’ringa R, et al. High number of intraepithelial CD8(+) tumor-infiltrating lymphocytes is associated with the absence of lymph node metastases in patients with large early-stage cervical cancer. Cancer Res. 2007;67:354–61.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Galon J, Fridman WH, Pages F. Adaptive immunologic microenvironment in colorectal cancer: a novel perspective. Cancer Res. 2007;67:1883–6.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Galon J, Pages F, Marincola FM, Angell HK, Thurin M, Lugli A, Zlobec I, Berger A, Bifulco C, Botti G, et al. Cancer classification using the immunoscore: a worldwide task force. J Transl Med. 2012;10:205.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    zur Hausen H. Papillomavirus infections – a major cause of human cancers. Biochim Biophys Acta. 1996;1288:F55–78.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Brown DR, Shew ML, Qadadri B, Neptune N, Vargas M, Tu W, Juliar BE, Breen TE, Fortenberry JD. A longitudinal study of genital human papillomavirus infection in a cohort of closely followed adolescent women. J Infect Dis. 2005;191:182–92.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Koutsky L. Epidemiology of genital human papillomavirus infection. Am J Med. 1997;102:3–8.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Chung CH, Gillison ML. Human papillomavirus in head and neck cancer: its role in pathogenesis and clinical implications. Clin Cancer Res. 2009;15:6758–62.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Egawa N, Egawa K, Griffin H, Doorbar J. Human papillomaviruses; epithelial tropisms, and the development of neoplasia. Viruses. 2015;7:3863–90.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Doorbar J, Egawa N, Griffin H, Kranjec C, Murakami I. Human papillomavirus molecular biology and disease association. Rev Med Virol. 2015;25(Suppl 1):2–23.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Doorbar J. Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci (Lond). 2006;110:525–41.CrossRefGoogle Scholar
  84. 84.
    Palefsky JM, Gillison ML, Strickler HD. Chapter 16: HPV vaccines in immunocompromised women and men. Vaccine. 2006;24(Suppl 3):S3-140–/146.Google Scholar
  85. 85.
    Bouwes Bavinck JN, Berkhout RJ. HPV infections and immunosuppression. Clin Dermatol. 1997;15:427–37.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Takeuchi O, Akira S. Recognition of viruses by innate immunity. Immunol Rev. 2007;220:214–24.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Karim R, Tummers B, Meyers C, Biryukov JL, Alam S, Backendorf C, Jha V, O’ringa R, van Ommen GJ, Melief CJ, et al. Human papillomavirus (HPV) upregulates the cellular deubiquitinase UCHL1 to suppress the keratinocyte’s innate immune response. PLoS Pathog. 2013;9:e1003384.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Karim R, Meyers C, Backendorf C, Ludigs K, O’ringa R, van Ommen GJ, Melief CJ, van der Burg SH, Boer JM. Human papillomavirus deregulates the response of a cellular network comprising of chemotactic and proinflammatory genes. PLoS One. 2011;6:e17848.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Tummers B, Goedemans R, Pelascini LPL, Jordanova ES, van Esch EMG, Meyers C, Melief CJM, Boer JM, van der Burg SH. Interferon-related developmental regulator 1 is used by human papillomavirus to suppress NF kappa B activation. Nat Commun. 2015;6:6537.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Fahey LM, Raff AB, Da Silva DM, Kast WM. A major role for the minor capsid protein of human papillomavirus type 16 in immune escape. J Immunol. 2009;183:6151–6.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Fausch SC, Da Silva DM, Rudolf MP, Kast WM. Human papillomavirus virus-like particles do not activate Langerhans cells: a possible immune escape mechanism used by human papillomaviruses. J Immunol. 2002;169:3242–9.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Lehtinen M, Rantala I, Toivonen A, Luoto H, Aine R, Lauslahti K, Yla-Outinen A, Romppanen U, Paavonen J. Depletion of Langerhans cells in cervical HPV infection is associated with replication of the virus. APMIS. 1993;101:833–7.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Zijlmans HJ, Fleuren GJ, Baelde HJ, Eilers PH, Kenter GG, Gorter A. Role of tumor derived proinflammatory cytokines GM-CSF, TNF-alpha, and IL-12 in the migration and differentiation of antigen-presenting cells in cervical carcinoma. Cancer. 2007;109:556–65.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    O’ringa R, de Jong A, Toes RE, van der Burg SH, Melief CJ. Interplay between human papillomaviruses and dendritic cells. Curr Top Microbiol Immunol. 2003;276:215–40.Google Scholar
  95. 95.
    Tummers B, Goedemans R, Jha V, Meyers C, Melief CJ, van der Burg SH, Boer JM. CD40-mediated amplification of local immunity by epithelial cells is impaired by HPV. J Invest Dermatol. 2014;134:2918–27.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Carter JJ, Koutsky LA, Wipf GC, Christensen ND, Lee SK, Kuypers J, Kiviat N, Galloway DA. Natural history of human papillomavirus type 16 capsid antibodies among a cohort of university women. J Infect Dis. 1996;174:927–36.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Ho GYF, Bierman R, Beardsley L, Chang CJ, Burk RD. Natural history of cervicovaginal papillomavirus infection in young women. N Engl J Med. 1998;338:423–8.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Welters MJ, de JA, van den Eeden SJ, van der Hulst JM, Kwappenberg KM, Hassane S, Franken KL, Drij’out JW, Fleuren GJ, Kenter G, et al. Frequent display of human papillomavirus type 16 E6-specific memory t-Helper cells in the healthy population as witness of previous viral encounter. Cancer Res. 2003;63:636–41.PubMedPubMedCentralGoogle Scholar
  99. 99.
    de Jong JA, van der Burg SH, Kwappenberg KM, van der Hulst JM, Franken KL, Geluk A, van Meijgaarden KE, Drij’out JW, Kenter G, Vermeij P, et al. Frequent detection of human papillomavirus 16 E2-specific t-helper immunity in healthy subjects. Cancer Res. 2002;62:472–9.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Woo YL, Sterling J, Damay I, Coleman N, Crawford R, van der Burg SH, Stanley M. Characterising the local immune responses in cervical intraepithelial neoplasia: a cross-sectional and longitudinal analysis. BJOG. 2008;115:1616–21.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    de Jong JA, van Poelgeest MI, van der Hulst JM, Drij’out JW, Fleuren GJ, Melief CJ, Kenter G, O’ringa R, van der Burg SH. Human papillomavirus type 16-positive cervical cancer is associated with impaired CD4+ T-cell immunity against early antigens E2 and E6. Cancer Res. 2004;64:5449–55.  https://doi.org/10.1158/0008-5472.CAN-04-0831.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Woo YL, van den Hende M, Sterling JC, Coleman N, Crawford RA, Kwappenberg KM, Stanley MA, van der Burg SH. A prospective study on the natural course of low-grade squamous intraepithelial lesions and the presence of HPV16 E2-, E6- and E7-specific t-cell responses. Int J Cancer. 2010;126:133–41.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    van der Burg SH, Piersma SJ, de JA, van der Hulst JM, Kwappenberg KM, van den Hende M, Welters MJ, Van Rood JJ, Fleuren GJ, Melief CJ, et al. Association of cervical cancer with the presence of CD4+ regulatory T cells specific for human papillomavirus antigens. Proc Natl Acad Sci U S A. 2007;104:12087–92.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    de Vos van Steenwijk P, Piersma SJ, Welters MJP, van der Hulst JM, Fleuren G, Hellebrekers BWJ, Kenter GG, van der Burg SH. Surgery followed by persistence of high-grade squamous intraepithelial lesions is associated with the induction of a dysfunctional HPV16-specific t-cell response. Clin Cancer Res. 2008;14:7188–95.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    van Poelgeest MI, Nijhuis ER, Kwappenberg KM, Hamming IE, Wouter DJ, Fleuren GJ, van der Zee AG, Melief CJ, Kenter GG, Nijman HW, et al. Distinct regulation and impact of type 1 t-cell immunity against HPV16 L1, E2 and E6 antigens during HPV16-induced cervical infection and neoplasia. Int J Cancer. 2006;118:675–83.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Monnier-Benoit S, Mauny F, Riethmuller D, Guerrini JS, Capilna M, Felix S, Seilles E, Mougin C, Pretet JL. Immunohistochemical analysis of CD4+ and CD8+ t-cell subsets in high risk human papillomavirus-associated pre-malignant and malignant lesions of the uterine cervix. Gynecol Oncol. 2006;102:22–31.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Bontkes HJ, Walboomers JM, Meijer CJ, Helmerhorst TJ, Stern PL. Specific HLA class I down-regulation is an early event in cervical dysplasia associated with clinical progression. Lancet. 1998;351:187–8.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Keating PJ, Cromme FV, Duggan-Keen M, Snijders PJ, Walboomers JM, Hunter RD, Dyer PA, Stern PL. Frequency of down-regulation of individual HLA-A and -B alleles in cervical carcinomas in relation to TAP-1 expression. Br J Cancer. 1995;72:405–11. ii general introduction 33PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Jordanova ES, Gorter A, Ayachi O, Prins F, Durrant LG, Kenter GG, van der Burg SH, Fleuren GJ. Human leukocyte antigen class I, MHC class I chain-related molecule A, and CD8+/regulatory t-cell ratio: which variable determines survival of cervical cancer patients? Clin Cancer Res. 2008;14:2028–35.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Dong DD, Yang H, Li K, Xu G, Song LH, Fan XL, Jiang XL, Yie SM. Human leukocyte antigen-G (HLA-G) expression in cervical lesions: association with cancer progression, HPV 16/18 infection, and host immune response. Reprod Sci. 2010;17:718–23.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Guimaraes MC, Soares CP, Donadi EA, Derchain SF, Andrade LA, Silva TG, Hassumi MK, Simoes RT, Miranda FA, Lira RC, et al. Low expression of human histocompatibility soluble leukocyte antigen-G (HLA-G5) in invasive cervical cancer with and without metastasis, associated with papilloma virus (HPV). J Histochem Cytochem. 2010;58:405–11.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Karim R, Jordanova ES, Piersma SJ, Kenter GG, Chen L, Boer JM, Melief CJ, van der Burg SH. Tumor-expressed B7-H1 and B7-DC in relation to PD-1+ t-cell infiltration and survival of patients with cervical carcinoma. Clin Cancer Res. 2009;15:6341–7.PubMedCrossRefGoogle Scholar
  113. 113.
    Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol. 2008;8:467–77.PubMedCrossRefGoogle Scholar
  114. 114.
    Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ, Zheng XX, Strom TB, Kuchroo VK. Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol. 2005;6:1245–52.CrossRefGoogle Scholar
  115. 115.
    Piersma SJ, Welters MJ, van der Burg SH. Tumor-specific regulatory T cells in cancer patients. Hum Immunol. 2008;69:241–9.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Heusinkveld M, Welters MJ, van Poelgeest MI, van der Hulst JM, Melief CJ, Fleuren GJ, Kenter GG, van der Burg SH. Detection of circulating human papillomavirus-specific T cells is associated with improved survival of patients with deeply infiltrating tumors. Int J Cancer. 2011;128:379–89.PubMedCrossRefGoogle Scholar
  117. 117.
    de Vos van Steenwijk PJD, Ramwadhdoebe TH, Goedemans R, Doorduijn EM, van Ham JJ, Gorter A, van Hall T, Kuijjer ML, van Poelgeest MIE, van der Burg SH, et al. Tumor-infiltrating CD14-positive myeloid cells and CD8-positive t-cells prolong survival in patients with cervical carcinoma. Int J Cancer. 2013;133:2884–94.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Hildesheim A, Herrero R, Wacholder S, Rodriguez AC, Solomon D, Bratti MC, Schiller JT, Gonzalez P, Dubin G, Porras C, et al. Effect of human papillomavirus 16/18 L1 viruslike particle vaccine among young women with preexisting infection: a randomized trial. JAMA. 2007;298:743–53.PubMedCrossRefGoogle Scholar
  119. 119.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Dong HD, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu GF, Tamada K, et al. Tumor-associated B7-H1 promotes t-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8:793–800.PubMedCrossRefGoogle Scholar
  121. 121.
    Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369:122–33.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Melief CJ, van der Burg SH. Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat Rev Cancer. 2008;8:351–60.PubMedCrossRefGoogle Scholar
  124. 124.
    Mocellin S, Mandruzzato S, Bronte V, Lise M, Nitti D. Part I: vaccines for solid tumours. Lancet Oncol. 2004;5:681–9.PubMedCrossRefGoogle Scholar
  125. 125.
    Chen YT, Panarelli NC, Piotti KC, Yantiss RK. Cancer-testis antigen expression in digestive tract carcinomas: frequent expression in esophageal squamous cell carcinoma and its precursor lesions. Cancer Immunol Res. 2014;2(5):480–6.PubMedCrossRefGoogle Scholar
  126. 126.
    Young MR, Neville BW, Chi AC, Lathers DM, Boyd GM, Day TA. Oral premalignant lesions induce immune reactivity to both premalignant oral lesions and head and neck squamous cell carcinoma. Cancer Immunol Immunother. 2007;56:1077–86.PubMedCrossRefGoogle Scholar
  127. 127.
    I. Young MR. Use of carcinogen-induced premalignant oral lesions in a dendritic cell-based vaccine to stimulate immune reactivity against both premalignant oral lesions and oral cancer. J Immunother. 2008;31:148–56.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Hanke CW, Swanson N, Bruce S, Berman B, Kulp J, Levy S. Complete clearance is sustained for at least 12 months after treatment of actinic keratoses of the face or balding scalp via daily dosing with imiquimod 3.75% or 2.50 % cream. Drugs Dermatol J. 2011;10(2):165–70.Google Scholar
  129. 129.
    Ulrich C, Johannsen A, Rowert-Huber J, Ulrich M, Sterry W, Stockfleth E. Results of a randomized placebo-controlled safety and efficacy study of topical diclofenac 3% gel in organ transplant patients with multiple keratoses. Eur J Dermatol. 2010;20(4):482–8.Google Scholar
  130. 130.
    Ghanghas P, Jain S, Rana C, Sanyal SN. Chemopreventive action of non-steroidal anti-inflammatory drugs on the inflammatory pathways in colon cancer. Biomed Pharmacother. 2016;78:239–47.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Toller IM, Hitzler I, Sayi A, Mueller A. 2, prevents Helicobacter-induced gastric preneoplasia and facilitates persistent infection in a mouse model. Gastroenterology. 2010;138(4). 1455–1467, 1467.e1451–1454CrossRefGoogle Scholar
  132. 132.
    Masclee GM, Coloma PM, Spaander MC, Kuipers EJ, Sturkenboom MC. BMJ Open. 2015;5(1):e006640.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Thrift AP, Anderson LA, Murray LJ, Cook MB, Shaheen NJ, Rubenstein JH. Nonsteroidal anti-inflammatory drug use is not associated with reduced risk of Barrett’s esophagus. Am J Gastroenterol. 2016;111(11):1528–35.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Zhang S, Zhang XQ, Ding XW, Yang RK, Huang SL, Kastelein F. Cyclooxygenase inhibitors use is associated with reduced risk of esophageal adenocarcinoma in patients with Barrett’s esophagus: a meta-analysis. Br J Cancer. 2014;110(9):2378–88.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    de Vos van Steenwijk PJ, van Poelgeest MI, Ramwadhdoebe TH, Lowik MJ, Berends-van der Meer DM, van der Minne CE. The long-term immune response after HPV16 peptide vaccination in women with low-grade pre-malignant disorders of the uterine cervix: a placebo-controlled phase II study. Cancer Immunol Immunother. 2014;63(2):147–60.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Marquez JP, Rivera R, Kang KH, Gardner MB, Torres JV. Human papillomavirus immunogen that provides protective tumor immunity and induces tumor regression. Viral Immunol. 2012;25(2):141–52.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    De Costa AM, Justis DN, Schuyler CA, Young MR. Administration of a vaccine composed of dendritic cells pulsed with premalignant oral lesion lysate to mice bearing carcinogen-induced premalignant oral lesions stimulates a protective immune response. Int Immunopharmacol. 2012;13(3):322–30.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Disis ML, Gad E, Herendeen DR, Lai VP, Park KH, Cecil DL. A multiantigen vaccine targeting neu, IGFBP-2, and IGF-IR prevents tumor progression in mice with preinvasive breast disease. Cancer Prev Res. 2013;6(12):1273–82.CrossRefGoogle Scholar
  139. 139.
    Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. GLOBOCAN 2012 v1.0, cancer incidence and mortality worldwide. IARC CancerBase No. 11 [Internet]. 2013, Lyon: International Agency for Research on Cancer. Available from: http://globocan.iarc.fr. Accessed on 20 July 2018.
  140. 140.
    Li N, Franceschi S, Howell-Jones R, Snijders PJF, Clifford GM. Human papillomavirus type distribution in 30, 848 invasive cervical cancers worldwide: variation by geographical region, histological type and year of publication. Int J Cancer. 2010;128:927–35.CrossRefGoogle Scholar
  141. 141.
    Bosch FX, De Sanjosé S. Chapter 1: Human papillomavirus and cervical cancer – burden and assessment of causality. J Natl Cancer Inst Monogr. 2003;(31):3–13.CrossRefGoogle Scholar
  142. 142.
    Trottier H, Franco EL. The epidemiology of genital human papillomavirus infection. Vaccine. 2006;24(Suppl 1):S1–S15.PubMedPubMedCentralGoogle Scholar
  143. 143.
    Gravitt PE. The known unknowns of HPV natural history. J Clin Invest. 2011;121:4593–9.  https://doi.org/10.1172/JCI57149.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Ellerbrock TV, Chiasson MA, Bush TJ, Sun XW, Sawo D, Brudney K, Wright TC. Incidence of cervical squamous intraepithelial lesions in HIV-infected women. JAMA. 2000;283:1031–7.  https://doi.org/10.1001/jama.283.8.1031.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Ognenovski VM, Marder W, Somers EC, Johnston CM, Farrehi JG, Selvaggi SM, McCune WJ. Increased incidence of cervical intraepithelial neoplasia in women with systemic lupus erythematosus treated with intravenous cyclophosphamide. J Rheumatol. 2004;31:1763–7.PubMedPubMedCentralGoogle Scholar
  146. 146.
    Nakagawa M, Gupta SK, Coleman HN, Sellers MA, Banken JA, Greenfield WW. A favorable clinical trend is associated with CD8 T-cell immune responses to the human papillomavirus type 16 e6 antigens in women being studied for abnormal pap smear results. J Low Genit Tract Dis. 2010;14:124–9.  https://doi.org/10.1097/LGT.0b013e3181c6f01e.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Wang SS, Schiffman M, Herrero R, Carreon J, Hildesheim A, Rodriguez AC, Bratti MC, Sherman ME, Morales J, Guillen D, Alfaro M, Clayman B, Burk RD, Viscidi RP. Determinants of human papillomavirus 16 serological conversion and persistence in a population-based cohort of 10 000 women in Costa Rica. Br J Cancer. 2004;91:1269–74.  https://doi.org/10.1038/sj.bjc.6602088.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Carter JJ, Madeleine MM, Shera K, Schwartz SM, Cushing-Haugen KL, Wipf GC, Porter P, Daling JR, JK MD, Galloway DA. Human papillomavirus 16 and 18 L1 serology compared across anogenital cancer sites. Cancer Res. 2001;61:1934–40.PubMedPubMedCentralGoogle Scholar
  149. 149.
    Stern PL, van der Burg SH, Hampson IN, Broker TR, Fiander A, Lacey CJ, Kitchener HC, Einstein MH. Therapy of human papillomavirus-related disease. Vaccine. 2012;30(Suppl 5):F71–82.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Kim KH, Greenfield WW, Cannon MJ, Coleman HN, Spencer HJ, Nakagawa M. CD4+ T-cell response against human papillomavirus type 16 E6 protein is associated with a favorable clinical trend. Cancer Immunol Immunother. 2012;61:63–70.  https://doi.org/10.1007/s00262-011-1092-5.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Farhat S, Nakagawa M, Moscicki AB. Cell-mediated immune responses to human papillomavirus 16 E6 and E7 antigens as measured by interferon gamma enzyme-linked immunospot in women with cleared or persistent human papillomavirus infection. Int J Gynecol Cancer. 2009;19:508–12.  https://doi.org/10.1111/IGC.0b013e3181a388c4.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Heusinkveld M, Welters MJ, Van Poelgeest MI, van der Hulst JM, Melief CJ, Fleuren GJ, Kenter GG, van der Burg SH. The detection of circulating human papillomavirus-specific T cells is associated with improved survival of patients with deeply infiltrating tumors. Int J Cancer. 2011;128:379–89.  https://doi.org/10.1002/ijc.25361.CrossRefPubMedGoogle Scholar
  153. 153.
    Venuti A, Paolini F, Nasir L, Corteggio A, Roperto S, Campo MS, Borzacchiello G. Papillomavirus E5: the smallest oncoprotein with many functions. Mol Cancer. 2011;10:140.  https://doi.org/10.1186/1476-4598-10-140.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Ashrafi GH, Haghshenas MR, Marchetti B, O’Brien PM, Campo MS. The E5 protein of human papillomavirus type 16 selectively down-regulates surface HLA class. Int J Cancer. 2005;113:276–83.  https://doi.org/10.1002/ijc.20558.CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Zhang B, Li P, Wang E, Brahmi Z, Dunn KW, Blum JS, Roman A. The E5 protein of human papillomavirus type 16 perturbs MHC class II antigen maturation in human foreskin keratinocytes treated with interferon-γ. Virology. 2003;310:100–8.  https://doi.org/10.1016/S0042-6822(03)00103-X.CrossRefPubMedGoogle Scholar
  156. 156.
    Campo MS, Graham SV, Cortese MS, Ashrafi GH, Araibi EH, Dornan ES, Miners K, Nunes C, Man S. HPV-16 E5 down-regulates expression of surface HLA class I and reduces recognition by CD8 T cells. Virology. 2010;407:137–42.  https://doi.org/10.1016/j.virol.2010.07.044.CrossRefPubMedGoogle Scholar
  157. 157.
    Stanley MA, Pett MR, Coleman N. HPV: from infection to cancer. Biochem Soc Trans. 2007;35:1456–60.  https://doi.org/10.1042/BST0351456.CrossRefPubMedGoogle Scholar
  158. 158.
    O’Brien PM, Campo MS. Evasion of host immunity directed by papillomavirus encoded proteins. Virus Res. 2002;1:103–18.CrossRefGoogle Scholar
  159. 159.
    Crosbie EJ, Einstein MH, Franceschi S, Kitchener HC. Human papillomavirus and cervical cancer. Lancet. 2013;382:889–99.  https://doi.org/10.1016/S0140-6736(13)60022-7.CrossRefGoogle Scholar
  160. 160.
    Scott ME, Ma Y, Kuzmich L, Moscicki AB. Diminished IFN-gamma and IL-10 and elevated Foxp3 mRNA expression in the cervix are associated with CIN 2 or 3. Int J Cancer. 2009;124:1379–83.  https://doi.org/10.1002/ijc.24117.CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Gooden M, Lampen M, Jordanova ES, Leffers N, Trimbos JB, van der Burg SH, Nijman H, Van Hall T. HLA-E expression by gynecological cancers restrains tumor-infiltrating CD8+ T lymphocytes. Proc Natl Acad Sci U S A. 2011;108:10656–61.  https://doi.org/10.1073/pnas.1100354108.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Piersma SJ. Immunosuppressive tumor microenvironment in cervical cancer patients. Cancer Microenviron. 2011;4:361–75.  https://doi.org/10.1007/s12307-011-0066-7.CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    O’Hagan DT, Rappuoli R. Novel approaches to vaccine delivery. Pharm Res. 2004;21:1519–30.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Vici P, Mariani L, Sergi D, et al. Immunologic treatments for precancerous lesions and uterine cervical cancer. J Exp Clin Cancer Res. 2014;33:29.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Koutsky LA, Ault KA, Wheeler CM, Brown DR, Barr E, Alvarez FB, Chiacchierini LM, Jansen KU. Proof of principle study investigators: a controlled trial of a human papillomavirus type 16 vaccine. N Engl J Med. 2002;347  https://doi.org/10.1056/NEJMoa020586.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Harper DM, Franco EL, Wheeler C, Ferris DG, Jenkins D, Schuind A, Zahaf T, Innis B, Naud P, De Carvalho NS, Roteli-Martins CM, Teixeira J, Blatter MM, Korn AP, Quint W, Dubin G, GlaxoSmithKline HPV Vaccine Study Group. Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. Lancet. 2004;364:1757–65.  https://doi.org/10.1016/S0140-6736(04)17398-4.CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Lowy DR, Schiller JT. Reducing HPV-associated cancer globally. Cancer Prev Res. 2012;5:18–23.  https://doi.org/10.1158/1940-6207.CAPR-11-0542.CrossRefGoogle Scholar
  168. 168.
    Harper DM, Williams KB. Prophylactic HPV vaccines: current knowledge of impact on gynecologic premalignancies. Discov Med. 2010;10:7–17.PubMedPubMedCentralGoogle Scholar
  169. 169.
    Campo MS, Roden RB. Papillomavirus prophylactic vaccines: established successes, new approaches. J Virol. 2010;84:1214–20.  https://doi.org/10.1128/JVI.01927-09.CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Vici P, Mariani L, Pizzuti L, Sergi D, Di Lauro L, Vizza E, Tomao F, Tomao S, Mancini E, Vincenzoni C, Barba M, Maugeri-Saccà M, Giovinazzo G, Venuti A. Emerging biological treatments for uterine cervical carcinoma. J Cancer. 2014;5:86–97.  https://doi.org/10.7150/jca.7963.CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Wright TC, Cox JT, Massad LS. Consensus guidelines for the management of women with cervical cytological abnormalities. JAMA. 2001;2002(287):2120–9.Google Scholar
  172. 172.
    Ma B, Maraj B, Tran NP, Knoff J, Chen A, Alvarez RD, Hung CF, Wu TC. Emerging human papillomavirus vaccines. Expert Opin Emerg Drugs. 2012;17:469–92.  https://doi.org/10.1517/14728214.2012.744393.CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Hall AH, Alexander KA. RNA interference of human papillomavirus type 18 E6 and E7 induces senescence in HeLa cells. J Virol. 2003;77:6066–9.  https://doi.org/10.1128/JVI.77.10.6066-6069.2003.CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Qi Z, Xu X, Zhang B, Li Y, Liu J, Chen S, Chen G, Huo X. Effect of simultaneous silencing of HPV-18 E6 and E7 on inducing apoptosis in HeLa cells. Biochem Cell Biol. 2010;88:697–704.  https://doi.org/10.1139/O10-005.CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Griffin H, Elston R, Jackson D, Ansell K, Coleman M, Winter G, Doorbar J. Inhibition of papillomavirus protein function in cervical cancer cells by intrabody targeting. J Mol Biol. 2006;355:360–78.  https://doi.org/10.1016/j.jmb.2005.10.077.CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Accardi L, Donà MG, Di Bonito P, Giorgi C. Intracellular anti-E7 human antibodies in single-chain format inhibit proliferation of HPV16-positive cervical carcinoma cells. Int J Cancer. 2005;116:564–70.  https://doi.org/10.1002/ijc.21052.CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Accardi L, Paolini F, Mandarino A, Percario Z, Bonito PD, Carlo VD, Affabris E, Giorgi C, Amici C, Venuti A. In vivo antitumor effect of an intracellular single-chain antibody fragment against the E7 oncoprotein of human papillomavirus 16. Int J Cancer 2014;134:2742–7.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Richter CE, Cocco E, Bellone S, Bellone M, Casagrande F, Todeschini P, Rüttinger D, Silasi DA, Azodi M, Schwartz PE, Rutherford TJ, Pecorelli S, Santin AD. Primary cervical carcinoma cell lines overexpress epithelial cell adhesion molecule (EpCAM) and are highly sensitive to immunotherapy with MT201, a fully human monoclonal anti-EpCAM antibody. Int J Gynecol Cancer. 2010;20:1440–7.PubMedPubMedCentralGoogle Scholar
  179. 179.
    Badaracco G, Venuti A. Human papillomavirus therapeutic vaccines in head and neck tumors. Expert Rev Anticancer Ther. 2007;7:753–66.  https://doi.org/10.1586/14737140.7.5.753.CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Venuti A. Progress and challenges in the vaccine-based treatment of head and neck cancers. J Exp Clin Cancer Res. 2009;28:69.  https://doi.org/10.1186/1756-9966-28-69.CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Cheever MA, Higano CS. PROVENGE (sipuleucel-T) in prostate cancer: the first FDA 7 approved therapeutic cancer vaccine. Clin Cancer Res. 2011;17:3520–6.  https://doi.org/10.1158/1078-0432.CCR-10-3126.CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    McKarney I, Sipuleucel T. Provenge: active cellular immunotherapy for advanced prostate 9 cancer. Issues Emerg Health Technol. 2007;10:1–4.Google Scholar
  183. 183.
    Ferrara A, Nonn M, Sehr P, Schreckenberger C, Pawlita M, Durst M, Schneider A, Kaufmann AM. Dendritic cell-based tumor vaccine for cervical cancer II: results of a clinical 12 pilot study in 15 individual patients. J Cancer Res Clin Oncol. 2003;129:521–30.  https://doi.org/10.1007/s00432-003-0463-5.CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Santin AD, Bellone S, Palmieri M, Zanolini A, Ravaggi A, Siegel ER, Roman JJ, Pecorelli S, Cannon MJ. Human papillomavirus type 16 and 18 E7-pulsed dendritic cell 15 vaccination of stage IB or IIA cervical cancer patients: a phase I escalating-dose trial. J Virol. 2008;82:1968–79.  https://doi.org/10.1128/JVI.02343-07.CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Trimble CL, Peng S, Kos F, Gravitt P, Viscidi R, Sugar E, Pardoll D, Wu TC. A phase I trial of a human papillomavirus DNA vaccine for HPV16+ cervical intraepithelial neoplasia 2/3. Clin Cancer Res. 2009;15:361–7.  https://doi.org/10.1158/1078-0432.CCR-08-1725.CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Klencke B, Matijevic M, Urban RG, Lathey JL, Hedley ML, Berry M, Thatcher J, Weinberg V, Wilson J, Darragh T, Jay N, Da Costa M, Palefsky JM. Encapsulated plasmid DNA treatment for human papillomavirus 16-associated anal dysplasia: a phase I study of ZYC101. Clin Cancer Res. 2002;8:1028–37.PubMedPubMedCentralGoogle Scholar
  187. 187.
    Sheets EE, Urban RG, Crum CP, Hedley ML, Politch JA, Gold MA, Muderspach LI, Cole GA, Crowley-Nowick PA. Immunotherapy of human cervical high-grade cervical intraepithelial neoplasia with microparticle-delivered human papillomavirus 16 E7 plasmid DNA. Am J Obstet Gynecol. 2003;188:916–26.  https://doi.org/10.1067/mob.2003.256.CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Garcia F, Petry KU, Muderspach L, Gold MA, Braly P, Crum CP, Magill M, Silverman M, Urban RG, Hedley ML, Beach KJ. ZYC101a for treatment of high-grade cervical intraepithelial neoplasia: a randomized controlled trial. Obstet Gynecol. 2004;103:317–26.  https://doi.org/10.1097/01.AOG.0000110246.93627.17.CrossRefPubMedPubMedCentralGoogle Scholar
  189. 189.
    Matijevic M, Hedley ML, Urban RG, Chicz RM, Lajoie C, Luby TM. Immunization with a poly (lactide co-glycolide) encapsulated plasmid DNA expressing antigenic regions of HPV 16 and 18 results in an increase in the precursor frequency of T cells that respond to epitopes from HPV 16, 18, 6 and 11. Cell Immunol. 2011;270:62–9.  https://doi.org/10.1016/j.cellimm.2011.04.005.CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Bagarazzi ML, Yan J, Morrow MP, Shen X, Parker RL, Lee JC, Giffear M, Pankhong P, Khan AS, Broderick KE, Knott C, Lin F, Boyer JD, Draghia-Akli R, White CJ, Kim JJ, Weiner DB, Sardesai NY. Immunotherapy against HPV16/ 18 generates potent TH1 and cytotoxic cellular immune responses. Sci Transl Med. 2012;4:155ra38.CrossRefGoogle Scholar
  191. 191.
    Bilu D, Sauder DN. Imiquimod: modes of action. Br J Dermatol. 2003;149(Suppl 66):5–8.PubMedPubMedCentralGoogle Scholar
  192. 192.
    Chuang CM, Monie A, Hung CF, Wu TC. Treatment with imiquimod enhances antitumor immunity induced by therapeutic HPV DNA vaccination. J Biomed Sci. 2010;17:32.  https://doi.org/10.1186/1423-0127-17-32.CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Vici P, Pizzuti L, Mariani L, Zampa G, et al. Targeting immune response with therapeutic vaccines in premalignant lesions and cervical cancer: hope or reality from clinical studies. Expert Rev Vaccines. 2016;15(10):1327–36.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Hariharan MJ, Driver DA, Townsend K, Brumm D, Polo JM, Belli BA, Catton DJ, Hsu D, Mittelstaedt D, McCormack JE, Karavodin L, Dubensky TW, Chang SM, Banks TA. DNA immunization against herpes simplex virus: enhanced efficacy using a Sindbis virus-based vector. J Virol. 1998;72:950–8.PubMedPubMedCentralGoogle Scholar
  195. 195.
    Brandsma JL, Shylankevich M, Su Y, Roberts A, Rose JK, Zelterman D, Buonocore L. Vesicular stomatitis virus-based therapeutic vaccination targeted to the E1, E2, E6, and E7 proteins of cottontail rabbit papillomavirus. J Virol. 2007;81:5749–58.  https://doi.org/10.1128/JVI.02835-06.CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Daemen T, Riezebos-Brilman A, Bungener L, Regts J, Dontje B, Wilschut J. Eradication of established HPV16-transformed tumours after immunisation with recombinant Semliki Forest virus expressing a fusion protein of E6 and E7. Vaccine. 2003;21:1082–8.  https://doi.org/10.1016/S0264-410X(02)00558-3.CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Berglund P, Quesada-Rolander M, Putkonen P, Biberfeld G, Thorstensson R, Liljeström P. Outcome of immunization of cynomolgus monkeys with recombinant Semliki Forest virus encoding human immunodeficiency virus type 1 envelope protein and challenge with a high dose of SHIV-4 virus. AIDS Res Hum Retrovir. 1997;13:1487–95.  https://doi.org/10.1089/aid.1997.13.1487.CrossRefPubMedPubMedCentralGoogle Scholar
  198. 198.
    Berglund P, Smerdou C, Fleeton MN, Tubulekas I, Liljeström P. Enhancing immune responses using suicidal DNA vaccines. Nat Biotechnol. 1998;16:562–5.  https://doi.org/10.1038/nbt0698-562.CrossRefPubMedPubMedCentralGoogle Scholar
  199. 199.
    Hsu KF, Hung CF, Cheng WF, He L, Slater LA, Ling M, Wu TC. Enhancement of suicidal DNA vaccine potency by linking Mycobacterium tuberculosis heat shock protein 70 to an antigen. Gene Ther. 2001;8:376–83.  https://doi.org/10.1038/sj.gt.3301408.CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Kim TW, Hung CF, Juang J, He L, Hardwick JM, Wu TC. Enhancement of suicidal DNA vaccine potency by delaying suicidal DNA-induced cell death. Gene Ther. 2004;11:336–42.  https://doi.org/10.1038/sj.gt.3302164.CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Herd KA, Harvey T, Khromykh AA, Tindle RW. Recombinant Kunjin virus replicon vaccines induce protective T-cell immunity against human papillomavirus 16 E7-expressing tumour. Virology. 2004;319:237–48.  https://doi.org/10.1016/j.virol.2003.10.032.CrossRefPubMedPubMedCentralGoogle Scholar
  202. 202.
    Varnavski AN, Young PR, Khromykh AA. Stable high-level expression of heterologous genes in vitro and in vivo by noncytopathic DNA-based Kunjin virus replicon vectors. J Virol. 2000;74:4394–403.  https://doi.org/10.1128/JVI.74.9.4394-4403.2000.CrossRefPubMedPubMedCentralGoogle Scholar
  203. 203.
    Stewart TJ, Drane D, Malliaros J. ISCOMATRIX adjuvant: an adjuvant suitable for use in anticancer vaccines. Vaccine. 2004;22:3738–43.  https://doi.org/10.1016/j.vaccine.2004.03.026.CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Cui Z, Huang L. Liposome-polycation-DNA (LPD) particle as a carrier and adjuvant for proteinbased vaccines: therapeutic effect against cervical cancer. Cancer Immunol Immunother. 2005;54:1180–90.  https://doi.org/10.1007/s00262-005-0685-2.CrossRefPubMedPubMedCentralGoogle Scholar
  205. 205.
    Kang TH, Monie A, Wu LS. Enhancement of protein vaccine potency by in vivo electroporation mediated intramuscular injection. Vaccine. 2011;29:1082–9.  https://doi.org/10.1016/j.vaccine.2010.11.063.CrossRefPubMedPubMedCentralGoogle Scholar
  206. 206.
    Venuti A, Massa S, Mett V, Vedova LD, Paolini F, Franconi R, Yusibov V. An E7-based therapeutic vaccine protects mice against HPV16 associated cancer. Vaccine. 2009;27:3395–7.  https://doi.org/10.1016/j.vaccine.2009.01.068.CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Massa S, Franconi R, Brandi R, Muller A, Mett V, Yusibov V, Venuti A. Anti-cancer activity of plant-produced HPV16 E7 vaccine. Vaccine. 2007;25:3018–21.  https://doi.org/10.1016/j.vaccine.2007.01.018.CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Chu NR, Wu HB, Wu T, Boux LJ, Siegel MI, Mizzen LA. Immunotherapy of a human papillomavirus (HPV) type 16 E7-expressing tumour by administration of fusion protein comprising Mycobacterium bovis bacilli Calmette-Guerin (BCG) hsp65 and HPV16 E7. Clin Exp Immunol. 2000;121:216–25.  https://doi.org/10.1046/j.1365-2249.2000.01293.x.CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Liu H, Wu BH, Rowse GJ, Emtage PC. Induction of CD4-independent E7-specific CD8+ memory response by heat shock fusion protein. Clin Vaccine Immunol. 2007;14:1013–23.  https://doi.org/10.1128/CVI.00029-07.CrossRefPubMedPubMedCentralGoogle Scholar
  210. 210.
    Liao CW, Chen CA, Lee CN. Fusion protein vaccine by domains of bacterial exotoxin linked with a tumor antigen generates potent immunologic responses and antitumor effects. Cancer Res. 2005;65:9089–98.  https://doi.org/10.1158/0008-5472.CAN-05-0958.CrossRefPubMedPubMedCentralGoogle Scholar
  211. 211.
    Preville X, Ladant D, Timmerman B, Leclerc C. Eradication of established tumors by vaccination with recombinant Bordetella pertussis adenylate cyclase carrying the human papillomavirus 16 E7 oncoprotein. Cancer Res. 2005;65:641–9.PubMedPubMedCentralGoogle Scholar
  212. 212.
    Granadillo M, Vallespi MG, Batte A, Mendoza O, Soria Y, Lugo VM, Torrens I. A novel fusion protein-based vaccine comprising a cell penetrating and immunostimulatory peptide linked to human papillomavirus (HPV) type 16 E7 antigen generates potent immunologic and anti-tumor responses in mice. Vaccine. 2011;290:920–30.CrossRefGoogle Scholar
  213. 213.
    Zwaveling S, Ferreira Mota SC, Nouta J. Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides. J Immunol. 2002;169:350–8.PubMedCrossRefPubMedCentralGoogle Scholar
  214. 214.
    Zhang YQ, Tsai YC, Monie A, Hung CF, Wu TC. Carrageenan as an adjuvant to enhance peptide-based vaccine potency. Vaccine. 2010;28:5212–9.  https://doi.org/10.1016/j.vaccine.2010.05.068.CrossRefPubMedPubMedCentralGoogle Scholar
  215. 215.
    Wu CY, Yang HY, Monie A. Intraperitoneal administration of poly (I:C) with polyethylenimine leads to significant antitumor immunity against murine ovarian tumors. Cancer Immunol Immunother. 2011;60:1085–96.  https://doi.org/10.1007/s00262-011-1013-7.CrossRefPubMedPubMedCentralGoogle Scholar
  216. 216.
    Daftarian P, Mansour M, Benoit AC. Eradication of established HPV 16-expressing tumors by a single administration of a vaccine composed of a liposome-encapsulated CTL-T helper fusion peptide in a water-in-oil emulsion. Vaccine. 2006;24:5235–44.  https://doi.org/10.1016/j.vaccine.2006.03.079.CrossRefPubMedPubMedCentralGoogle Scholar
  217. 217.
    Barrios K, Celis E. TriVax-HPV: an improved peptide-based therapeutic vaccination strategy against human papillomavirus-induced cancers. Cancer Immunol Immunother. 2012;61:1307–17.  https://doi.org/10.1007/s00262-012-1259-8.CrossRefPubMedPubMedCentralGoogle Scholar
  218. 218.
    Goldstone SE, Palefsky JM, Winnett MT. Activity of HspE7, a novel immunotherapy, in patients with anogenital warts. Dis Colon Rectum. 2002;45:502–7.  https://doi.org/10.1007/s10350-004-6229-6.CrossRefPubMedPubMedCentralGoogle Scholar
  219. 219.
    Derkay CS, Smith RJ, McClay J. HspE7 treatment of pediatric recurrent respiratory papillomatosis: final results of an open-label trial. Ann Otol Rhinol Laryngol. 2005;114:730–7.PubMedCrossRefPubMedCentralGoogle Scholar
  220. 220.
    Roman LD, Wilczynski S, Muderspach LI. A phase II study of Hsp-7 (SGN-00101) in women with high-grade cervical intraepithelial neoplasia. Gynecol Oncol. 2007;106:558–66.  https://doi.org/10.1016/j.ygyno.2007.05.038.CrossRefPubMedPubMedCentralGoogle Scholar
  221. 221.
    Einstein MH, Kadish AS, Burk RD. Heat shock fusion protein-based immunotherapy for treatment of cervical intraepithelial neoplasia III. Gynecol Oncol. 2007;106:453–60.  https://doi.org/10.1016/j.ygyno.2007.04.038.CrossRefPubMedPubMedCentralGoogle Scholar
  222. 222.
    Van Doorslaer K, Reimers LL, Studentsov YY, Einstein MH, Burk RD. Serological response to an HPV16 E7 based therapeutic vaccine in women with high-grade cervical dysplasia. Gynecol Oncol. 2010;116:208–12.  https://doi.org/10.1016/j.ygyno.2009.05.044.CrossRefPubMedPubMedCentralGoogle Scholar
  223. 223.
    Daayana S, Elkord E, Winters U. Phase II trial of imiquimod and HPV therapeutic vaccination in patients with vulval intraepithelial neoplasia. Br J Cancer. 2010;102:1129–236.  https://doi.org/10.1038/sj.bjc.6605611.CrossRefPubMedPubMedCentralGoogle Scholar
  224. 224.
    Genticel: Genticel reaches an important milestone by launching its phase II Trial in women infected with high – risk HPV before the appearance of high grade cervical lesions. 2014. Available from http://www.genticel.com/
  225. 225.
    Steller MA, Gurski KJ, Murakami M. Cell-mediated immunological responses in cervical and vaginal cancer patients immunized with a lipidated epitope of human papillomavirus type 16 E7. Clin Cancer Res. 1998;4:2103–9.PubMedPubMedCentralGoogle Scholar
  226. 226.
    Van Driel WJ, Ressing ME, Kenter GG. Vaccination with HPV16 peptides of patients with advanced cervical carcinoma: clinical evaluation of a phase I-II trial. Eur J Cancer. 1999;35:946–52.  https://doi.org/10.1016/S0959-8049(99)00048-9.CrossRefPubMedPubMedCentralGoogle Scholar
  227. 227.
    Welters MJ, Kenter GG, Piersma SJ. Induction of tumor-specific CD4+ andeCD8+ T-cell immunity in cervical cancerpatients by a human papillomavirustype 16 E6 and E7 long peptides vaccine. Clin Cancer Res. 2008;14:178–87.  https://doi.org/10.1158/1078-0432.CCR-07-1880.CrossRefPubMedPubMedCentralGoogle Scholar
  228. 228.
    Kenter GG, Welters MJ, Valentijn AR. Phase I immunotherapeutic trial with long peptides spanning the E6 and E7 sequences of high-risk human papillomavirus 16 in end-stage cervical cancer patients shows low toxicity and robust immunogenicity. Clin Cancer Res. 2008;14:169–77.  https://doi.org/10.1158/1078-0432.CCR-07-1881.CrossRefPubMedPubMedCentralGoogle Scholar
  229. 229.
    Kenter GG, Welters MJ, Valentijn AR. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med. 2009;361:1838–47.  https://doi.org/10.1056/NEJMoa0810097.CrossRefPubMedPubMedCentralGoogle Scholar
  230. 230.
    Welters MJ, Kenter GG, De Vos Van Steenwijk PJ. Success or failure of vaccination for HPV16-positive vulvar lesions correlates with kinetics and phenotype of induced T-cell responses. Proc Natl Acad Sci U S A. 2010;107:11895–9.  https://doi.org/10.1073/pnas.1006500107.CrossRefPubMedPubMedCentralGoogle Scholar
  231. 231.
    De Vos Van Steenwijk PJ, Ramwadhdoebe TH, Lowik MJ. A placebo-controlled randomized HPV16 synthetic long-peptide vaccination study in women with high-grade cervical squamous intraepithelial lesions. Cancer Immunol Immunother. 2012;61:1485–92.  https://doi.org/10.1007/s00262-012-1292-7.CrossRefPubMedPubMedCentralGoogle Scholar
  232. 232.
    Franconi R, Massa S, Illiano E, Mullar A, Cirilli A, Accardi L, Di Bonito P, Giorgi C, Venuti A. Exploiting the plant secretory pathway to improve the anticancer activity of a plant-derived HPV16 E7 vaccine. Int J Immunopathol Pharmacol. 2006;19:187–97.PubMedCrossRefGoogle Scholar
  233. 233.
    Franconi R, Di Bonito P, Dibello F, Accardi L, Muller A, Cirilli A, Simeone P, Donà MG, Venuti A, Giorgi C. Plant-derived human papillomavirus 16 E7 oncoprotein induces immune response and specific tumor protection. Cancer Res. 2002;62:3654–8.PubMedGoogle Scholar
  234. 234.
    Muderspach L, Wilczynski S, Roman L, Bade L, Felix J, Small LA, Kast WM, Fascio G, Marty V, Weber J. A phase I trial of a human papillomavirus (HPV) peptide vaccine for women with high-grade cervical and vulvar intraepithelial neoplasia who are HPV 16 positive. Clin Cancer Res. 2000;6:3406–16.PubMedGoogle Scholar
  235. 235.
    Demurtas OC, Massa S, Ferrante P, Venuti A, Franconi R, Giuliano G. A chlamydomonas-derived human papillomavirus 16 E7 vaccine induces specific tumor protection. PLoS One. 2013;8:e61473.  https://doi.org/10.1371/journal.pone.0061473.CrossRefPubMedPubMedCentralGoogle Scholar
  236. 236.
    Fukumoto H, Irahara M. Human papilloma virus (HPV) and cervical cancer. J Med Invest. 2002;49(3–4):124–33.Google Scholar
  237. 237.
    Wilting SM, Steenbergen DM. Molecular events leading to HPV-induced high grade neoplasia. Papillomavirus Res. 2016;2:85–8.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Samir A. Farghaly
    • 1
  1. 1.The Joan and Sanford I. Weill Medical College/Graduate School of Medical Sciences, The New York Presbyterian Hospital-Weill Cornell Medical Center, and Sandra and Edward Meyer Cancer CenterCornell UniversityNew YorkUSA

Personalised recommendations