Advertisement

Current Advances in Optical Screening for Cervical Cancer

  • Amuthachelvi Daniel
  • Wilfred Prasanna Savarimuthu
Chapter

Abstract

Optical techniques play an important role in biomedical applications initiated by the advent of new optical gadgets like CCD, optic fibres and other optical technologies including lasers. This unprecedented growth in diverse optical modalities in turn aided a renaissance in the field of optical spectroscopy for cervical cancer diagnosis. From hyperspectral imaging to mass screening, various researchers are spearheaded to take these techniques from bench-side to bedside. These technologies offer techniques from mass screening to obtaining high-resolution in vivo, real-time images, with a very high sensitivity and specificity. In addition, optical techniques can be noninvasive, offer high spatial resolution and have the ability to provide better information than conventional techniques owing to their biomolecular sensitivity. With all these advantages, optical techniques have progressed to a formidable position for combating cervical cancer. Hence this chapter aims to throw light on the various optical techniques and their perspectives in tackling cervical cancer.

Keywords

Optical spectroscopy for cervical cancer Raman spectroscopy Fluorescence spectroscopy Diffuse reflectance spectroscopy FTIR spectroscopy Raman mapping IR mapping IR imaging for cervical cancer 

References

  1. 1.
    Orfanoudaki IM, Kappou D, Sifakis S. Recent advances in optical imaging for cervical cancer detection. Arch Gynecol Obstet. 2011;284(5):1197–208.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Yu B, Shah A, Nagarajan VK, et al. Diffuse reflectance spectroscopy of epithelial tissue with a smart fiber-optic probe. Biomed Opt Express. 2014;5(3):675.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Rasooly A, Herold KE. Mobile health technologies. Methods and protocols, vol. 1256. New York: Springer; 2015.Google Scholar
  4. 4.
    Aroca R. Surface-enhaced vibrational spectroscopy. Chichester: Wiley; 2006.CrossRefGoogle Scholar
  5. 5.
    Douketis C, Haslett TL, Wang Z, et al. Self-affine silver films and surface-enhanced Raman scattering: linking spectroscopy to morphology. J Chem Phys. 2000;113:11315–23.CrossRefGoogle Scholar
  6. 6.
    Baker MJ, Trevisan J, Bassan P, et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc. 2014;9(8):1771–91.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Van Der Sneppen LS, Ritchie G, Hancock G, et al. Evanescent-wave cavity enhanced spectroscopy as a tool in label-free biosensing. Conference on lasers and electro-optics 2010, OSA technical digest, AMC2. 2010.Google Scholar
  8. 8.
    Mitchell MF, Schottenfeld D, Tortolero-Luna G, et al. Colposcopy for the diagnosis of squamous intraepithelial lesions: a meta-analysis. Obstet Gynecol. 1998;91(4):626–31.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Nordstrom RJ, Burke L, Niloff JM, et al. Identification of cervical intraepithelial neoplasia (CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy. Lasers Surg Med. 2001;29(2):118–27.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Mirabal YN, Chang SK, Atkinson EN, et al. Reflectance spectroscopy for in vivo detection of cervical precancer. J Biomed Opt. 2002;7(4):587.PubMedCrossRefGoogle Scholar
  11. 11.
    Marín NM, Milbourne A, Rhodes H, et al. Diffuse reflectance patterns in cervical spectroscopy. Gynecol Oncol. 2005;99(3 Suppl):116–20.CrossRefGoogle Scholar
  12. 12.
    Mourant JR, Bocklage TJ, Powers TM, et al. In vivo light scattering measurements for detection of precancerous conditions of the cervix. Gynecol Oncol. 2007;105(2):439–45.PubMedCrossRefGoogle Scholar
  13. 13.
    Alvarez RD, Wright TC. Effective cervical neoplasia detection with a novel optical detection system: a randomized trial. Gynecol Oncol. 2007;104(2):281–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Desantis T, Chakhtoura N, Twiggs L, et al. Spectroscopic imaging as a triage test for cervical disease: a prospective multicenter clinical trial. J Low Genit Tract Dis. 2007;11(1):18–24.PubMedCrossRefGoogle Scholar
  15. 15.
    Wang A, Nammalavar V, Drezek R. Experimental evaluation of angularly variable fiber geometry for targeting depth-resolved reflectance from layered epithelial tissue phantoms. J Biomed Opt. 2007;12(4):44011.CrossRefGoogle Scholar
  16. 16.
    Arifler D, Schwarz RA, Chang SK, Richards-Kortum R. Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma. Appl Opt. 2005;44(20):4291–305.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Orfanoudaki IM, Themelis GC, Sifakis SK, et al. A clinical study of optical biopsy of the uterine cervix using a multispectral imaging system. Gynecol Oncol. 2005;96(1):119–31.PubMedCrossRefGoogle Scholar
  18. 18.
    Balas C. A novel optical imaging method for the early detection, quantitative grading, and mapping of cancerous and precancerous lesions of cervix. IEEE Trans Biomed Eng. 2001;48(1):96–104.PubMedCrossRefGoogle Scholar
  19. 19.
    Pogue BW, Kaufman HB, Zelenchuk A, et al. Analysis of acetic acid-induced whitening of high-grade squamous intraepithelial lesions. J Biomed Opt. 2001;6(4):397–403.PubMedCrossRefGoogle Scholar
  20. 20.
    Young Park S, Follen M, Milbourne A, et al. Automated image analysis of digital colposcopy for the detection of cervical neoplasia. J Biomed Opt. 2008;13(1):14029.CrossRefGoogle Scholar
  21. 21.
    Thekkek N, Richards-Kortum R. Optical imaging for cervical cancer detection: solutions for a continuing global problem. Nat Rev Cancer. 2008;8(9):725.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Collier T, Richards-Kortum R. Real-time reflectance confocal microscopy: comparison of two-dimensional images and three-dimensional image stacks for detection of cervical precancer. J Biomed Opt. 2007;12(2):1–7.CrossRefGoogle Scholar
  23. 23.
    Shaikh R, Prabitha VG, Dora TK, et al. A comparative evaluation of diffuse reflectance and Raman spectroscopy in the detection of cervical cancer. J Biophotonics. 2016;11:1–11.Google Scholar
  24. 24.
    Winkelman J, Rasmussen-Taxdal DS. Quantitative determination of porphyrin uptake by tumour tissue following parenteral administration. Bull Johns Hopkins Hosp. 1960;107:228–33.PubMedGoogle Scholar
  25. 25.
    Andersson-Engels S, af Klinteberg C, Svanberg K, Svanberg S. In vivo fluorescence imaging for tissue diagnostics. Phys Med Biol. 1997;42(5):815.PubMedCrossRefGoogle Scholar
  26. 26.
    Mitchell MF, Cantor SB, Ramanujam N, et al. Fluorescence spectroscopy for diagnosis of squamous intraepithelial lesions of the cervix. Obstet Gynecol. 1999;93(3):462–70.PubMedGoogle Scholar
  27. 27.
    Shahzad A, Edetsberger M, Koehler G. Fluorescence spectroscopy: an emerging excellent diagnostic tool in medical sciences. Appl Spectrosc Rev. 2010;45(1):1–11.CrossRefGoogle Scholar
  28. 28.
    Pavlova I, Sokolov K, Drezek R, et al. Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy. Photochem Photobiol. 2003;77(5):550–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Drezek R, Brookner C, Pavlova I, et al. Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia. Photochem Photobiol. 2001;73(6):636–41.PubMedCrossRefGoogle Scholar
  30. 30.
    Ramanujam N. Fluorescence spectroscopy of neoplastic and non-neoplastic tissues. Neoplasia. 2000;2(1–2):89–117.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Vaitkuviene A, Gegzna V, Kurtinaitiene R, et al. Cervical smear photodiagnosis by fluorescence. Photomed Laser Surg. 2012;30(5):268–74.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Pandey K, Pradhan A, Agarwal A, et al. Fluorescence spectroscopy: a new approach in cervical cancer. J Obstet Gynecol India. 2012;62(4):432–6.CrossRefGoogle Scholar
  33. 33.
    Ramanujam N, Mitchell MF, Mahadevan A, et al. Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN). Gynecol Oncol. 1994;52(1):31–8.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Ramanujam N, Mitchell MF, Mahadevan A, et al. Development of a multivariate statistical algorithm to analyze human cervical tissue fluorescence spectra acquired in vivo. Lasers Surg and Med. 1996;19(1):46–62.CrossRefGoogle Scholar
  35. 35.
    Mujat C, Greiner C, Baldwin A, et al. Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells. Int J Cancer. 2008;122(2):363–71.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Vansevičiūtė R, Venius J, Žukovskaja O, et al. 5-aminolevulinic-acid-based fluorescence spectroscopy and conventional colposcopy for in vivo detection of cervical pre-malignancy. BMC Womens Health. 2015;15(1):35.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Zhao Q, He Y, Wang X-L, et al. Differentially expressed proteins among normal cervix, cervical intraepithelial neoplasia and cervical squamous cell carcinoma. Clin Transl Oncol. 2015;17(8):620–31.PubMedCrossRefGoogle Scholar
  38. 38.
    Mahadevan-Jansen A, Mitchell MF, Ramanujam N, et al. Nearinfrared Raman spectroscopy for in vitro detection of cervical precancers. Photochem Photobiol. 1998;68(1):123–32.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Lyng FM, Faolain EO, Conroy J, et al. Vibrational spectroscopy for cervical cancer pathology, from biochemical analysis to diagnostic tool. Exp Mol Pathol. 2007;82(2):121–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Jess PRT, Smith DDW, Mazilu M, et al. Early detection of cervical neoplasia by Raman spectroscopy. Int J Cancer. 2007;121(12):2723–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Krishna CM, Prathima NB, Malini R, et al. Raman spectroscopy studies for diagnosis of cancers in human uterine cervix. Vib Spectrosc. 2006;41(1):136–41.CrossRefGoogle Scholar
  42. 42.
    Mahadevan-Jansen A, Mitchell MF, Ramanujam N, et al. Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo. Photochem Photobiol. 1998;68(3):427–31.PubMedCrossRefGoogle Scholar
  43. 43.
    Utzinger U, Heintzelman DL, Mahadevan-Jansen A, et al. Near-infrared Raman spectroscopy for in vivo detection of cervical precancers. Appl Spectrosc. 2001;55(8):955–9.CrossRefGoogle Scholar
  44. 44.
    Robichaux-Viehoever A, Kanter EM, Shappell H, et al. Characterization of Raman spectra measured in vivo for the detection of cervical dysplasia. Appl Spectrosc. 2007;61(9):986–93.PubMedCrossRefGoogle Scholar
  45. 45.
    Mo J, Zheng W, Low JJH, et al. High wavenumber Raman spectroscopy for in vivo detection of cervical dysplasia. Anal Chem. 2009;81(21):8908–15.PubMedCrossRefGoogle Scholar
  46. 46.
    Kanter EM, Majumder S, Vargis E, et al. Multiclass discrimination of cervical precancers using Raman spectroscopy. J Raman Spectrosc. 2009;40(2):205–11.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Kanter EM, Vargis E, Majumder S, et al. Application of Raman spectroscopy for cervical dysplasia diagnosis. J Biophotonics. 2009;2(1–2):81–90.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Kanter EM, Majumder S, Kanter GJ, et al. Effect of hormonal variation on Raman spectra for cervical disease detection. Am J Obstet Gynecol. 2009;200(5):512e1–5.CrossRefGoogle Scholar
  49. 49.
    Duraipandian S, Zheng W, Ng J, et al. In vivo diagnosis of cervical precancer using Raman spectroscopy and genetic algorithm techniques. Analyst. 2011;136(20):4328–36.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Duraipandian S, Zheng W, Ng J, et al. Simultaneous fingerprint and high-wavenumber confocal Raman spectroscopy enhances early detection of cervical precancer in vivo. Anal Chem. 2012;84(14):5913–9.PubMedCrossRefGoogle Scholar
  51. 51.
    González-Solís JL, Martínez-Espinosa JC, Torres-González LA, et al. Cervical cancer detection based on serum sample Raman spectroscopy. Lasers Med Sci. 2014;29:979.PubMedCrossRefGoogle Scholar
  52. 52.
    Li D, Feng S, Huang H, et al. Label-free detection of blood plasma using silver nanoparticle based surface-enhanced Raman spectroscopy for esophageal cancer screening. Analyst. 2013;138(14):3967–74.PubMedCrossRefGoogle Scholar
  53. 53.
    Wong PTT, Lacelle S, Fung MFK, et al. Characterization of exfoliated cells and tissues from human endocervix and ectocervix by FTIR and ATR/FTIR spectroscopy. Biospectroscopy. 1995;1(5):357–64.CrossRefGoogle Scholar
  54. 54.
    Wood BR, Quinn MA, Burden FR, Mcnaughton D. An investigation into FTIR spectroscopy as a biodiagnostic tool for cervical cancer. Biospectroscopy. 1996;2(3):143–53.CrossRefGoogle Scholar
  55. 55.
    Chiriboga L, Xie P, Yee H, et al. Infrared spectroscopy of human tissue. I. Differentiation and maturation of epithelial cells in the human cervix. Biospectroscopy. 1998;4:47–53.PubMedCrossRefGoogle Scholar
  56. 56.
    Chiriboga L, Xie P, Vigorita V, et al. Infrared spectroscopy of human tissue. II. A comparative study of spectra of biopsies of cervical squamous epithelium and of exfoliated cervical cells. Biospectroscopy. 1998;4:55–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Fung MFK, Senterman MK, Mikhael NZ, et al. Pressure-tuning Fourier transform infrared spectroscopic study of carcinogenesis in human endometrium. Biospectroscopy. 1996;2:155–65.CrossRefGoogle Scholar
  58. 58.
    Cohenford MA, Rigas B, et al. Cytologically normal cells from neoplastic cervical samples display extensive structural abnormalities on IR spectroscopy: implications for tumor biology. Proc Natl Acad Sci U S A. 1998;95(26):15327–32.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Neviliappan S, Kan LF, Lee Walter TTL, et al. Infrared spectral features of exfoliated cervical cells, cervical adenocarcinoma tissue, and an adenocarcinoma cell line (SiSo). Gynecol Oncol. 2002;85:170–4.PubMedCrossRefGoogle Scholar
  60. 60.
    Diem M, Chiriboga L, Lasch P, Pacifico A. IR spectra and IR spectralmaps of individual normal and cancerous cells. Biopolym Biospectrosc. 2002;67(4–5):349–53.CrossRefGoogle Scholar
  61. 61.
    Sindhuphak R, Issaravanich S, Udomprasertgul V, et al. A new approach for the detection of cervical cancer in Thai women. Gynecol Oncol. 2003;90:10–4.PubMedCrossRefGoogle Scholar
  62. 62.
    El-Tawil SG, Adnan R, Muhamed ZN, Othman NH. Comparative study between Pap smear cytology and FTIR spectroscopy: a new tool for screening for cervical cancer. Pathology. 2008;40(6):600–3.PubMedCrossRefGoogle Scholar
  63. 63.
    Walsh MJ, Singh HF, Stringfellow HF, et al. FTIR microspectroscopy coupled with two-class discrimination segregates markers responsible for inter- and intra-category variance in exfoliative cervical cytology. Biomark Insights. 2008;3:179–89.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Schubert JM, Bird B, Papamarkakis K, et al. Spectral cytopathology of cervical samples: detecting cellular abnormalities in cytologically normal cells. Lab Investig. 2010;90(7):1068–77.PubMedCrossRefGoogle Scholar
  65. 65.
    Cohenford MA, Godwin TA, Cahn F, et al. Infrared spectroscopy of normal and abnormal cervical smears: evaluation by principal component analysis. Gynecol Oncol. 1997;66:59–65.PubMedCrossRefGoogle Scholar
  66. 66.
    Wong PTT, Senterman MK, Jackli P, et al. Detailed account of confounding factors in interpretation of FTIR spectra of exfoliated cervical cells. Biopolymers. 2002;67:376–86.PubMedCrossRefGoogle Scholar
  67. 67.
    Romeo MJ, Quinn MA, Burden FR, et al. Influence of benign cellular changes in diagnosis of cervical cancer using IR microspectroscopy. Biopolymers. 2002;67:362–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Mordechai S, Sahu RK, Hammody Z, et al. Possible common biomarkers from FTIR microspectroscopy of cervical cancer and melanoma. J Microsc. 2004;215(1):86–91.PubMedCrossRefGoogle Scholar
  69. 69.
    Ostrowska KM, Garcia A, Meade AD, et al. Correlation of p16INK4A expression and HPV copy number with cellular FTIR spectroscopic signatures of cervical cancer cells. Analyst. 2011;136:1365–73.PubMedCrossRefGoogle Scholar
  70. 70.
    Purandare NC, Patel II, Trevisan J, et al. Biospectroscopy insights into the multi-stage process of cervical cancer development: probing for spectral biomarkers in cytology to distinguish grades. Analyst. 2013;138:3909–16.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Lima KMG, Gajjar K, Valasoulis G, et al. Classification of cervical cytology for human papilloma virus (HPV) infection using biospectroscopy and variable selection techniques. Anal Methods. 2014;6:9643–52.CrossRefGoogle Scholar
  72. 72.
    Purandare NC, Patel II, Lima KMG, et al. Infrared spectroscopy with multivariate analysis segregates low-grade cervical cytology based on likelihood to regress, remain static or progress. Anal Methods. 2014;6:4576–84.CrossRefGoogle Scholar
  73. 73.
    Gajjar K, Ahmadzai AA, Valasoulis G, et al. Histology verification demonstrates that biospectroscopy analysis of cervical cytology identifies underlying disease more accurately than conventional screening: removing the confounder of discordance. PLoS One. 2014;9:e82416:1.CrossRefGoogle Scholar
  74. 74.
    Yessi Jusman Y, Isa NAM, Ng S-C, et al. Automated cervical precancerous cells screening system based on Fourier transform infrared spectroscopy features. J Biomed Opt. 2016;21(7):075005.CrossRefGoogle Scholar
  75. 75.
    Neves ACO, Silva PP, Morais CLM, et al. ATR-FTIR and multivariate analysis as a screening tool for cervical cancer in women from Northeast Brazil: a biospectroscopic approach. RSC Adv. 2016;6:99648–55.CrossRefGoogle Scholar
  76. 76.
    Bonnier F, Brachet G, Duong R, et al. Screening the low molecular weight fraction of human serum using ATR-IR spectroscopy. J Biophotonics. 2016;9(10):1085–97.PubMedCrossRefGoogle Scholar
  77. 77.
    Gu J, Fu CY, Ng BK, et al. Enhancement of early cervical cancer diagnosis with epithelial layer analysis of fluorescence lifetime images. PLoS One. 2015;10(5):1–15.Google Scholar
  78. 78.
    Rowlands CJ, Park D, Bruns OT, et al. Wide- field three-photon excitation in biological samples. Light Sci Appl. 2016;6(5):e16255–9.CrossRefGoogle Scholar
  79. 79.
    Parker MF, Mooradian GC, Okimoto GS, et al. Initial neural net construction for the detection of cervical intraepithelial neoplasia by fluorescence imaging. Am J Obstet Gynecol. 2002;187(2):398–402.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Chang SK, Arifler D, Drezek R, et al. Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements. J Biomed Opt. 2004;9(3):511.PubMedCrossRefGoogle Scholar
  81. 81.
    Tan KM, Herrington CS, Brown CTA. Discrimination of normal from pre-malignant cervical tissue by Raman mapping of de-paraffinized histological tissue sections. J Biophotonics. 2010;4(1–2):40–8.PubMedGoogle Scholar
  82. 82.
    Kamemoto LE, Misra AK, Sharma SK, et al. Near-infrared micro-Raman spectroscopy for in vitro detection of cervical Cancer. Appl Spectrosc. 2010;64(3):255–61.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Rashid N, Nawaz H, Poon KWC, et al. Raman microspectroscopy for the early detection of pre-malignant changes in cervical tissue. Exp Mol Pathol. 2014;97(3):554–64.PubMedCrossRefGoogle Scholar
  84. 84.
    Daniel A, Aruna P, Joseph L, et al. Biochemical assessment of human uterine cervix by micro-Raman mapping. Photodiagn Photodyn Ther. 2017;17:65–74.CrossRefGoogle Scholar
  85. 85.
    Chang JI, Huang YB, Wu PC, et al. Characterization of human cervical precancerous tissue through the Fourier transform infrared microscopy with mapping method. Gynecol Oncol. 2003;91:577–83.PubMedCrossRefGoogle Scholar
  86. 86.
    Wood BR, Chiriboga L, Yee H, et al. Fourier transform infrared (FTIR) spectral mapping of the cervical transformation zone, and dysplastic squamous epithelium. Gynecol Oncol. 2004;93:59–68.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Steller W, Einenkel J, Horn L-C, et al. Delimitation of squamous cell cervical carcinoma using infrared microspectroscopic imaging. Anal Bioanal Chem. 2006;384:145–54.PubMedCrossRefGoogle Scholar
  88. 88.
    Ferris DG, Lawhead RA, Dickman ED, et al. Multimodal hyperspectral imaging for the noninvasive diagnosis of cervical neoplasia. J Low Genit Tract Dis. 2001 Apr;5(2):65–72.PubMedCrossRefGoogle Scholar
  89. 89.
    Benavides J, Chang S, Park S, et al. Multispectral digital colposcopy for in vivo detection of cervical cancer. Opt Express. 2003 May 19;11(10):1223–36.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Amuthachelvi Daniel
    • 1
  • Wilfred Prasanna Savarimuthu
    • 2
  1. 1.Department of Medical PhysicsAnna UniversityChennaiIndia
  2. 2.Department of PhysicsMadras Christian CollegeChennaiIndia

Personalised recommendations