Advertisement

Potential Biomarkers for Personalized Radiation Therapy for Patients with Uterine Cervical Cancer

  • Pablo Moreno-AcostaEmail author
  • Shyrly Carrillo
  • Oscar Gamboa
  • Diana Mayorga
  • Alfredo Romero-Rojas
  • Alexis Vallard
  • Chloe Rancoule
  • Nicolas Magné
Chapter

Abstract

Uterine cervical cancer (UCC) is one of the most prevalent malignant neoplasms in the world. UCC develops beyond the stage in situ and is frequently treated by a combination of intracavitary radiation therapy and external beam radiation therapy; 30–40% of patients with similar prognosis factors do not respond equally to a comparable standard treatment. Therefore, the study and identification of prognostic biomarkers and predictive biomarkers, which allow the identification of subpopulations of patients most likely to respond to a given therapy, would be extremely useful in the selection of patients for the development of innovative and effective therapies for locally advanced, metastatic, and refractory uterine cervical cancer. A comparative analysis of UCC in the context of other cancers may reveal that it is relatively smaller number of targeted molecular agents that have been tested. Some studies indicate that there may be a significant association between the response to treatment and the tumor phenotype, characterized by changes in gene, protein, and metabolic expression. This expression of genes and proteins is modulated, some of them considered with possible prognostic value in UCC and in other types of cancer, such as those that we have studied in our work team, IGF1R, IGF-IGF-II, GAPDH, HIF-1 alpha, survivin, GLUT1, CAIX, HKII, hTERT, HPV16 variants. Of these, IGF1R, GAPDH, HIF-1 alpha, GLUT1, and factors such as HPV16 variants and hemoglobin levels will be the subject of this review as potential biomarkers for personalized oncological radiation in the management of UCC.

Keywords

Uterine cervical cancer Biomarkers for uterine cervical cancer Personalized radiation therapy for uterine cervical cancer Radiation therapy for uterine cervical cancer HIF-1 alpha biomarker IGF1R gene expression in uterine cervical cancer 

Notes

Acknowledgment

The topic of revision includes a large part of the work we have been doing for several years and to which they contribute Functional Unit of Gynecology Oncology, Oncology Pathology Group, Group Area Radiotherapy Oncology, Unit of Analysis, which are part of the National Institute of Cancerology, Bogotá, Colombia, and the Department of Radiation Oncology, Institute de Cancérologie de la Loire-Lucien Neuwirth, Saint-Priest in Jarez, France.

References

  1. 1.
    Piñeros M, Cendales R, Murillo R, Wiesner C, Tovar S. Pap test coverage and related factors in Colombia, 2005. Rev Salud Publica (Bogota). 2007;9(3):327–41.CrossRefGoogle Scholar
  2. 2.
    Lewis MJ, Council R, Sammons-Posey D. Barriers to breast and cervical cancer screening among New Jersey African Americans and Latinas. N J Med. 2002;99(1–2):27–32.PubMedGoogle Scholar
  3. 3.
    Moreno-Acosta P, Vallard A, Carrillo S, Gamboa O, Romero-Rojas A, Molano M, Acosta J, Mayorga D, Rancoule C, Garcia MA, Cotes Mestre M, Magné N. Biomarkers of resistance to radiation therapy: a prospective study in cervical carcinoma. Radiat Oncol. 2017;12(1):120.CrossRefGoogle Scholar
  4. 4.
    Moreno-Acosta P, Gamboa O, Sanchez de Gomez M, et al. IGF1R gene expression as a predictive marker of response to ionizing radiation for patients with locally advanced HPV16- positive cervical Cancer. Anticancer Res. 2012;32:4319–26.PubMedGoogle Scholar
  5. 5.
    Yang J, Yue JB, Liu J, Yu JM. Repopulation of tumor cells during fractionated radiotherapy and detection methods (review). Oncol Lett. 2014;7(6):1755–60.CrossRefGoogle Scholar
  6. 6.
    Huang Z, Mayr NA, Yuh WT, et al. Predicting outcomes in cervical cancer: a kinetic model of tumor regression during radiation therapy. Cancer Res. 2010;70(2):463–70.CrossRefGoogle Scholar
  7. 7.
    Moreno-Acosta P, Carrillo S, Gamboa O, Romero-Rojas A, Acosta J, Molano M, Balart-Serra J, Cotes M, Rancoule C, Magné N. Novel predictive biomarkers for cervical cancer prognosis. Mol Clin Oncol. 2016;5(6):792–6.CrossRefGoogle Scholar
  8. 8.
    Niibe Y, Watanabe J, Tsunoda S, et al. Concomitant expression of HER2 and HIF-1alpha is a predictor of poor prognosis in uterine cervical carcinoma treated with concurrent hemoradiotherapy: prospective analysis (KGROG0501). Eur J Gynaecol Oncol. 2010;31(5):491–6.PubMedGoogle Scholar
  9. 9.
    Noordhuis MG, Eijsink JJ, Roossink F, et al. Prognostic cell biological markers in cervical cancer patients primarily treated with (chemo) radiation: a systematic review. Int J Radiat Oncol Biol Phys. 2011;79(2):325–34.CrossRefGoogle Scholar
  10. 10.
    Magne N, Chargari C, Deutsch E, et al. Molecular profiling of uterine cervical carcinoma: an overview with a special focus on rationally designed target based anticancer agents. Cancer Metastasis Rev. 2008;27:737–50.CrossRefGoogle Scholar
  11. 11.
    Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervical. Cancer Res. 1996;56:4509–15.PubMedGoogle Scholar
  12. 12.
    Lloret M, Lara PC, Bordón E, et al. IGF-1R expression in localized cervical carcinoma patients treated by radiochemotherapy. Gynecol Oncol. 2007;106:8–11.CrossRefGoogle Scholar
  13. 13.
    Ferdousi J, Nagai Y, Asato T, et al. Impact of human papillomavirus genotype on response to treatment and survival in patients receiving radiotherapy for squamous cell carcinoma of the cervix. Exp Ther Med. 2010;1(3):525–30.CrossRefGoogle Scholar
  14. 14.
    Moreno-Acosta P. Expresión del receptor de IGF-I y detección de variantes del virus del papiloma humano en pacientes con carcinomas escamocelualres invasivos de cuello uterino y su posible relación con la respuesta a la radioterapia [tesis Doctoral]. Bogotá (Colombia): Universidad Nacional de Colombia; 2006. 175 p.Google Scholar
  15. 15.
    IARC. Monographs on the Evaluation of Carcinogenic Risks to Humans. Human Papilomaviruses. Human Papillomavirus (HPV) Infection. Genomic Structure and Properties of Gene Products. 64, 40–43. 1995.Google Scholar
  16. 16.
    Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189:12.CrossRefGoogle Scholar
  17. 17.
    Haugland HK, Vukovic V, Pintilie M, Fyles AW, Milosevic M, Hill RP, et al. Expression of hypoxia-inducible factor-1alpha in cervical carcinomas: correlation with tumor oxygenation. Int J Radiat Oncol Biol Phys. 2002;53:854.CrossRefGoogle Scholar
  18. 18.
    Hutchison GJ, Valentine HR, Loncaster JA, Davidson SE, Hunter RD, Roberts SA, et al. Hypoxia-inducible factor 1alpha expression as an intrinsic marker of hypoxia: correlation with tumor oxygen, pimonidazole measurements, and outcome in locally advanced carcinoma of the cervix. Clin Cancer Res. 2004;10:8405.CrossRefGoogle Scholar
  19. 19.
    Moreno-Acosta P, Carrillo S, Gamboa O, Acosta Y, Balart-Serra J, Magne N, Melo-Uribe M-A, Romero-Rojas A-E. Expression of the hypoxic and glycolytic markers, CAIX, GLUT-1 and HKII and their association with early treatment response in squamous cell carcinomas of the uterine cervix. Prog Obstet Ginecol. 2013;56(8):404–13.CrossRefGoogle Scholar
  20. 20.
    Moreno-Acosta P, Romero-Rojas A, Carrillo S, Gamboa O, Acosta J, Balart-Serra J, Magne N. GLUT1 and hemoglobin levels: hypoxic markers of treatment response in patients with locally advanced cervical cancer. Mol Cancer Ther. 2013;12(11 Suppl):C39.CrossRefGoogle Scholar
  21. 21.
    Dayan F, Roux D, Brahimi-Horn MC, Pouyssegur J, Mazure NM. The oxygen sensor factor-inhibiting hypoxia-inducible factor-1 controls expression of distinct genes through the bifunctional transcriptional character of hypoxia-inducible factor-1alpha. Cancer Res. 2006;66:3688.CrossRefGoogle Scholar
  22. 22.
    Gatenby RA, Gillies RJ. A microenvironmental model of carcinogenesis. Nat Rev Cancer. 2008;8:56.CrossRefGoogle Scholar
  23. 23.
    Yang L, Cao Z, Li F, Post DE, Van Meir EG, Zhong H, et al. Tumor specific gene expression using the Survivin promoter is further increased by hypoxia. Gene Ther. 2004;11(15):1215–23.CrossRefGoogle Scholar
  24. 24.
    Bache M, Holzapfel D, Kappler M, Holzhausen HJ, Taubert H, Dunst J, Hänsgen G. Survivin protein expression and hypoxia in advanced cervical carcinoma of patients treated by radiotherapy. Gynecol Oncol. 2007;104:139–44.CrossRefGoogle Scholar
  25. 25.
    Mamede M, Higashi T, Kitaichi M, Ishizu K, Ishimori T, Nakamoto Y, et al. [18F] FDG uptake and PCNA, Glut-1, and hexokinase-II expressions in cancers and inflammatory lesions of the lung. Neoplasia. 2005;7:369.CrossRefGoogle Scholar
  26. 26.
    Mendez LE, Manci N, Cantuaria G, Gomez-Marin O, Penalver M, Braunschweiger P, et al. Expression of glucose transporter-1 in cervical cancer and its precursors. Gynecol Oncol. 2002;86:138.CrossRefGoogle Scholar
  27. 27.
    Loncaster JA, Harris AL, Davidson SE, Logue JP, Hunter RD, Wycoff CC, et al. Carbonic anhydrase (CA IX) expression, a potential new intrinsic marker of hypoxia: correlations with tumor oxygen measurements and prognosis in locally advanced carcinoma of the cervix. Cancer Res. 2001;61:6394.PubMedGoogle Scholar
  28. 28.
    Brahimi-Horn C, Pouyssegur J. The role of the hypoxia-inducible factor in tumor metabolism growth and invasion. Bull Cancer. 2006;93:E73.PubMedGoogle Scholar
  29. 29.
    Miller J, et al. HPV16 E7 protein and hTERT proteins defective for telomere maintenance cooperate to immortalize human keratinocytes. PLoS Pathog. 2014;9:e1003284.CrossRefGoogle Scholar
  30. 30.
    Wellenhofer A, Brustmann H. Expression of human telomerase reverse transcriptase in vulvar intraepithelial neoplasia and squamous cell carcinoma: an immunohistochemical study with survivin and p53. Arch Pathol Lab Med. 2012;136(11):1359–65.CrossRefGoogle Scholar
  31. 31.
    Instituto Nacional de Cancerología, Bogotá D. C Colombia. Cáncer de Cuello Uterino. En: Guías de práctica clínica en enfermedades neoplásicas. 413–428. 2001.Google Scholar
  32. 32.
    Betancourt Diego Palacio and Carlos Vicente rada Escobar. Anuario Estadístico. “Por el control del Cáncer”. Ministerio de la Protección Social, Instituto Nacional de Cancerología E.S.E. 4. 2007.Google Scholar
  33. 33.
    Garibaldi C, Jereczek-Fossa BA, Marvaso G, Dicuonzo S, Rojas DP, Cattani F, Starzyńska A, Ciardo D, Surgo A, Leonardi MC, Ricotti R. Recent advances in radiation oncology. Ecancermedicalscience. 2017;11:785.CrossRefGoogle Scholar
  34. 34.
    Carrillo SA. Expresión de CAIX, GLUT-1 y HK II y su posible asociación con cáncer escamocelular invasivo de cuello uterino [tesis de Maestria]. Bogotá (Colombia): Universidad Nacional de Colombia; 2010. 90 p.Google Scholar
  35. 35.
    Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9(3):193–9.CrossRefGoogle Scholar
  36. 36.
    Chatterjee DK, Wolfe T, Lee J, Brown AP, Singh PK, Bhattarai SR, Diagaradjane P, Krishnan S. Convergence of nanotechnology with radiation therapy-insights and implications for clinical translation. Transl Cancer Res. 2013;2(4):256–68.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Vici P, Mariani L, Pizzuti L, et al. Emerging biological treatments for uterine cervical carcinoma. J Cancer. 2014;5(2):86–97.CrossRefGoogle Scholar
  38. 38.
    Begg AC, Stewart FA, Vens C. Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer. 2011;11(4):239–53.CrossRefGoogle Scholar
  39. 39.
    Mountzios G, Soultati A, Pectasides D, Dimopoulos MA, Papadimitriou CA. Novel approaches for concurrent irradiation in locally advanced cervical cancer: platinum combinations, non-platinum-containing regimens, and molecular targeted agents. Obstet Gynecol Int. 2013;2013:536765.CrossRefGoogle Scholar
  40. 40.
    Brünner N. What is the difference between “predictive and prognostic biomarkers”? Can you give some examples? Connect. 2009;13:18–9.Google Scholar
  41. 41.
    Vogt M, Butz K, Dymalla S, Semzow J, Hoppe-Seyler F. Inhibition of bax activity is crucial for the anti-apoptotic function of the human papillomavirus E6 oncoprotein. Oncogene. 2006;25(29):4009–15.CrossRefGoogle Scholar
  42. 42.
    Lichtig H, Algrisi M, Botzer LE, Abadi T, Verbitzky Y, Jackman A, Tommasino M, Zehbe I, Sherman L. HPV16 E6 natural variants exhibit different activities in functional assays relevant to the carcinogenic potential of E6. Virology. 2006;350(1):216–27.CrossRefGoogle Scholar
  43. 43.
    Zacapala-Gómez AE, Del Moral-Hernández O, Villegas-Sepúlveda N, et al. Changes in global gene expression profiles induced by HPV 16 E6 oncoprotein variants in cervical carcinoma C33-A cells. Virology. 2016;488:187–95.CrossRefGoogle Scholar
  44. 44.
    Moreno-Acosta P, Vallard A, Molano M, Huertas A, Gamboa Ó, Cotes M, Romero-Rojas A, Rancoule C, Magné N. HPV-16 variants’ impact on uterine cervical cancer response to radiotherapy: a descriptive pilot study. Cancer Radiother. 2017;21(2):104–8.  https://doi.org/10.1016/j.canrad.2016.09.018. Epub 2017 Mar 18.CrossRefPubMedGoogle Scholar
  45. 45.
    Dunst J, Kuhnt T, Strauss HG, Krause U, Pelz T, Koelbl H, et al. Anemia in cervical cancers: impact on survival, patterns of relapse, and association with hypoxia and angiogenesis. Int J Radiat Oncol Biol Phys. 2003;56:778.CrossRefGoogle Scholar
  46. 46.
    Vaupel P, Thews O, Hoeckel M. Treatment resistance of solid tumors: role of hypoxia and anemia. Med Oncol. 2001;18:243.CrossRefGoogle Scholar
  47. 47.
    Mayer A, Hockel M, Vaupel P. Endogenous hypoxia markers: case not proven. Adv Exp Med Biol. 2008;614:127–36.CrossRefGoogle Scholar
  48. 48.
    Airley RE, Loncaster J, Raleigh JA, Harris AL, Davidson SE, Hunter RD, et al. GLUT-1 and CAIX as intrinsic markers of hypoxia in carcinoma of the cervix: relationship to pimonidazole binding. Int J Cancer. 2003;104:85.CrossRefGoogle Scholar
  49. 49.
    Lee WY, Huang SC, Hsu KF, Tzeng CC, Shen WL. Roles for hypoxia-regulated genes during cervical carcinogenesis: somatic evolution during the hypoxia-glycolysis-acidosis sequence. Gynecol Oncol. 2008;108:377.CrossRefGoogle Scholar
  50. 50.
    Kim JW, Kim SJ, Han SM, Paik SY, Hur SY, Kim YW, Lee JM, Namkoong SE. Increased glyceraldehyde-3-phosphate dehydrogenase gene expression in human cervical cancers. Gynecol Oncol. 1998;71:266–9.CrossRefGoogle Scholar
  51. 51.
    Hansen CN, Ketabi Z, Rosenstierne MW, Palle C, Boesen HC, Norrild B. Expression of CPEB, GAPDH and U6snRNA in cervical and ovarian tissue during cancer development. APMIS. 2009;117:53–9.CrossRefGoogle Scholar
  52. 52.
    Harima Y, Sawada S, Nagata K, Sougawa M, Ohnishi T. Human papilloma virus (HPV) DNA associated with prognosis of cervical cancer after radiotherapy. Int J Radiat Oncol Biol Phys. 2002;52:1345–51.CrossRefGoogle Scholar
  53. 53.
    Badaracco G, Savarese A, Micheli A, Rizzo C, Paolini F, Carosi M, et al. Persistence of HPV after radiochemotherapy in locally advanced cervical cancer. Oncol Rep. 2010;23:1093–9.PubMedGoogle Scholar
  54. 54.
    Song YJ, Kim JY, Lee SK, Lim HS, Lim MC, Seo SS, et al. Persistent human papillomavirus DNA is associated with local recurrence after radiotherapy of uterine cervical cancer. Int J Cancer. 2011;129:896–902.CrossRefGoogle Scholar
  55. 55.
    Bachtiary B, Obermair A, Dreier B, Birner P, Breitenecker G, Knocke TH, et al. Impact of multiple HPV infection on response to treatment and survival in patients receiving radical radiotherapy for cervical cancer. Int J Cancer. 2002;102:237–43.CrossRefGoogle Scholar
  56. 56.
    Kristensen GB, Karlsen F, Jenkins A, et al. Human papilloma virus has no prognostic significance in cervical carcinoma. Eur J Cancer. 1996;32A:1349–53.CrossRefGoogle Scholar
  57. 57.
    Van Bommel PF, van den Brule AJ, Helmerhorst TJ, Gallee MP, Gaarenstroom KN, Walboomers JM, et al. HPV DNA presence and HPV genotypes as prognostic factors in low-stage squamous cell cervical cancer. Gynecol Oncol. 1993;48:333–7.CrossRefGoogle Scholar
  58. 58.
    Lai HC, Sun CA, Yu MH, Chen HJ, Liu HS, Chu TY. Favorable clinical outcome of cervical cancers infected with human papilloma virus type 58 and related types. Int J Cancer. 1999;84:553–7.CrossRefGoogle Scholar
  59. 59.
    Huang LW, Chao SL, Hwang JL. Human papillomavirus-31-related types predict better survival in cervical carcinoma. Cancer. 2004;100:327–34.CrossRefGoogle Scholar
  60. 60.
    Tong SY, Lee YS, Park JS, Namkoong SE. Human papillomavirus genotype as a prognostic factor in carcinoma of the uterine cervix. Int J Gynecol Cancer. 2007;17:1307–13.CrossRefGoogle Scholar
  61. 61.
    Muñoz N, Bosch FX, de Sanjosé S, Herrero R, Castellsagué X, Shah KV, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348:518–27.CrossRefGoogle Scholar
  62. 62.
    Moreno-Acosta P, Molano M, Huertas A, Sánchez de Gómez M, Romero A, González M, et al. A non-radioactive PCR-SSCP analysis allows distinguish between HPV 16 European and Asian-American variants in squamous cell carcinomas of the uterine cervix in Colombia. Virus Genes. 2008;37:22–30.CrossRefGoogle Scholar
  63. 63.
    Huertas-Salgado A, Martin-Gamez DC, Moreno P, Murillo R, Bravo MM, Villa L, et al. E6 molecular of human papillomavirus (HPV) type 16: an updated and unified criterion for clustering and nomenclature. Virology. 2011;410:201–15.CrossRefGoogle Scholar
  64. 64.
    Burk RD, Harari A, Chen Z. Human papillomavirus genome variants. Virology. 2013;445:232–43.  https://doi.org/10.1016/j.virol.2013.07.018.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Hang D, Gao L, Sun M, Liu Y, Ke Y. Functional effects of sequence variations in the E6 and E2 genes of human papilloma virus 16 European and Asian variants. J Med Virol. 2014;86:618–26.CrossRefGoogle Scholar
  66. 66.
    Kilic S, Cracchiolo B, Gabel M, Haffty B, Omar MO. The relevance of molecular biomarkers in cervical cancer patients treated with radiotherapy. Ann Transl Med. 2015;3(18):261.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Kaneko H, Yu D, Miura M. Overexpression of IGF-I receptor in HeLa cells enhances in vivo radioresponse. Biochem Biophys Res Commun. 2007;363:937–41.CrossRefGoogle Scholar
  68. 68.
    Moreno-Acosta P, Cotes M, Gamboa O, Magné N. Radiotherapy and complementary treatment for cervical cancer. Int J Gynecol Cancer. 2015;25:1398.CrossRefGoogle Scholar
  69. 69.
    Kast RE, Boockvar JA, Brüning A, et al. A conceptually new treatment approach for relapsed glioblastoma: coordinated undermining of survival paths with nine repurposed drugs (CUSP9) by the International Initiative for Accelerated Improvement of Glioblastoma Care. Oncotarget. 2013;4(4):502–30.CrossRefGoogle Scholar
  70. 70.
    Shishodia S. Molecular mechanisms of curcumin action: gene expression. Biofactors. 2013;39(1):37–55.CrossRefGoogle Scholar
  71. 71.
    Xiao Z, Zhang A, Lin J, et al. Telomerase: a target for therapeutic effects of curcumin and a curcumin derivative in Aβ1-42 insult in vitro. PLoS One. 2014;9:e1d1251.Google Scholar
  72. 72.
    Abouzeid AH, Patel NR, Rachman IM, Senn S, Torchilin VP. Anti-cancer activity of anti-GLUT1 antibody-targeted polymeric micelles co-loaded with curcumin and doxorubicin. J Drug Target. 2013;21(10):994–1000.CrossRefGoogle Scholar
  73. 73.
    Gunnink L, Louters L. The mechanism of curcumin inhibition on GluT1. Available at: https://www.calvin.edu/academic/science/summer/2015posters_papers/GunninkPoster.pdf. Accessed 02/01/2016.
  74. 74.
    Mehta HJ, Patel V, Sadikot RT. Curcumin and lung cancer – a review. Target Oncol. 2014;9(4):295–310.CrossRefGoogle Scholar
  75. 75.
    Higgins GS, Krause M, McKenna WG, Baumann M. Personalized radiation oncology: epidermal growth factor receptor and other receptor tyrosine kinase inhibitors, Mol Rad Oncol. Berlin/Heidelberg: Springer; 2016. p. 107–22.Google Scholar
  76. 76.
    Abdulkarim B, Sabri S, Deutsch É, Chagraoui H, Maggiorella L, Thierry J, et al. Antiviral agent cidofovir restores p53 function and enhances the radiosensitivity in HPV-associated cancers. Oncogene. 2002;21:2334–46.CrossRefGoogle Scholar
  77. 77.
    Deberne M, Levy A, Mondini M, Dessen P, Vivet S, Supiramaniam A, et al. The combination of the antiviral agent cidofovir and anti-EGFR antibody cetuximab exerts an anti-proliferative effect on HPV-positive cervical cancer cell lines’ in vitro and in vivo xenografts. Anti-Cancer Drugs. 2013;24:599–608.PubMedGoogle Scholar
  78. 78.
    Deutsch É, Levy A, Mazeron R, Gazzah A, Angevin EA, Ribrag V, et al. Phase I trial evaluating the antiviral agent cidofovir in combination with chemoradiation in cervical cancer patients: a novel approach to treat HPV-related malignancies? Eur J Cancer. 2014;50:74.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pablo Moreno-Acosta
    • 1
    • 2
    Email author
  • Shyrly Carrillo
    • 1
  • Oscar Gamboa
    • 2
    • 3
  • Diana Mayorga
    • 2
  • Alfredo Romero-Rojas
    • 4
  • Alexis Vallard
    • 5
  • Chloe Rancoule
    • 5
  • Nicolas Magné
    • 5
  1. 1.Research Group in Cancer BiologyNational Cancer InstituteBogotáColombia
  2. 2.Research Group in Radiobiology Clinical, Molecular and CellularNational Cancer InstituteBogotáColombia
  3. 3.Unit of AnalysisNational Cancer InstituteBogotáColombia
  4. 4.Group of Pathology OncologyNational Cancer InstituteBogotaColombia
  5. 5.Department of Radiation OncologyInstitut de cancérologie de la Loire-Lucien NeuwirthSaint-Priest en JarezFrance

Personalised recommendations