Advertisement

Artificial Intelligence and Machine Learning for Large-Scale Data

  • Vo Ngoc PhuEmail author
  • Vo Thi Ngoc Tran
Chapter
Part of the EAI/Springer Innovations in Communication and Computing book series (EAISICC)

Abstract

The storing, the processing, and the extracting of the big data sets (BDs) have many very difficult problems for current commercial applications, researches, etc. Artificial intelligence (AI) and machine learning (ML) have also been built and studied in the strongest way in the world. Their algorithms, methods, approaches, models, etc. have been studied, developed, and applied to many different fields successfully. Unsurprisingly, they have also been surveyed for storing and handling these BDs, and in addition, they have also been used for extracting the significant values of these massive data sets (MSs) successfully. Therefore, we present all possible models of the artificial intelligence and machine learning for the large-scale data sets (LSSs) certainly in this chapter.

Keywords

Artificial intelligence Machine learning Large-scale data Massive data Big data 

References

  1. André, Q., Carmon, Z., Wertenbroch, K., Crum, A., Frank, D., Goldstein, W., Huber, J., van Boven, L., Weber, B., & Yang, H. (2018). Consumer choice and autonomy in the age of artificial intelligence and big data. Customer Needs and Solutions, 5(1–2), 28–37.CrossRefGoogle Scholar
  2. Bakkar, N., Kovalik, T., Lorenzini, I., Spangler, S., Lacoste, A., Sponaugle, K., Ferrante, P., Argentinis, E., Sattler, R., & Bowser, R. (2018). Artificial intelligence in neurodegenerative disease research: Use of IBM Watson to identify additional RNA-binding proteins altered in amyotrophic lateral sclerosis. ActaNeuropathologica, 135(2), 227–247.Google Scholar
  3. Batsakis, S., Petrakis, E. G. M., & Milios, E. (2009). Improving the performance of focused web crawlers. Journal Data & Knowledge Engineering, 68(10), 1001–1013, Amsterdam, Netherlands.CrossRefGoogle Scholar
  4. Carrera-Trejo, V., GrigoriSidorov, Miranda-Jiménez, S., Ibarra, M. M., & CadenaMartínez, R. (2015). Latent Dirichlet Allocation complement in the vector space model for Multi-Label Text Classification. International Journal of Combinatorial Optimization Problems and Informatics, 6(1), 7–19.Google Scholar
  5. Cimatti, A., Do, M., Micheli, A., Roveri, M., & Smith, D. E. (2018). Strong temporal planning with uncontrollable durations. Artificial Intelligence, 256, 1–34.  https://doi.org/10.1016/j.artint.2017.11.006.MathSciNetCrossRefzbMATHGoogle Scholar
  6. Cloudera. (2018). http://www.cloudera.com
  7. Davatzikos, C. (2018). Quantifying anatomical and functional heterogeneity in big datasets, using machine learning methods towards a dimensional neuroimaging framework. Biological Psychiatry, 83(9), S14–S15.  https://doi.org/10.1016/j.biopsych.2018.02.053.CrossRefGoogle Scholar
  8. Dharwadker, A. (2006). The clique algorithm. In Proceedings of the Institute of Mathematics (pp. 1–41).Google Scholar
  9. Hadoop. (2018). http://hadoop.apache.org
  10. Hongyan Zhang, & Xiyu Liu. (2011). A CLIQUE algorithm using DNA computing techniques based on closed-circle DNA sequences. Biosystems, 105(1), 3–82.Google Scholar
  11. Kangwook, L., Maximilian, L., Ramtin, P., Dimitris, P., & Kannan, R. (2018). Speeding up distributed machine learning using codes. IEEE Transactions on Information Theory, 64(3), 1514–1529.  https://doi.org/10.1109/tit.2017.2736066.MathSciNetCrossRefzbMATHGoogle Scholar
  12. McDonald, J. F. (2018). Back to the future - the integration of big data with machine learning is re-establishing the importance of predictive correlations in ovarian cancer diagnostics and therapeutics. Gynecologic Oncology, 149(2), 230–231.  https://doi.org/10.1016/j.ygyno.2018.03.053.CrossRefGoogle Scholar
  13. Ognjen Rudovic, Jaeryoung Lee, Miles Dai, Bjorn Schuller, Rosalind Picard (2018) Personalized machine learning for robot perception of affect and engagement in autism therapy. arXiv:1802.01186 [cs.RO], arXiv:1802.01186v1 [cs.RO].Google Scholar
  14. Salton, A. W., & Yang, C. S. (1975). A vector space model for automatic indexing. Communications of the ACM, 18(11), 613–620, NY, USA.CrossRefGoogle Scholar
  15. Scozzari, A., & Tardella, F. (2008). A clique algorithm for standard quadratic programming. Discrete Applied Mathematics, 156(13), 2439–2448.MathSciNetCrossRefGoogle Scholar
  16. Singh, V. K., & Singh, V. K. (2015). Vector space model: An information retrieval system. International Journal of Advanced Engineering Research and Studies E-ISSN 2249–8974,, 4(2), 141–143.Google Scholar
  17. Soucy, P., & Mineau, G. W. (2005) Beyond TFIDF weighting for text categorization in the vector space model. In Proceedings of the 19th International Joint Conference on Artificial Intelligence (pp. 1130–1135). USA.Google Scholar
  18. Vo Ngoc Phu, & Vo Thi Ngoc Tran. (2017). English sentiment classification using only the sentiment lexicons with a JOHNSON coefficient in a parallel network environment. American Journal of Engineering and Applied Sciences, 11(1), 39–65.  https://doi.org/10.3844/ajeassp.2017.CrossRefGoogle Scholar
  19. Vo Ngoc Phu, & Vo Thi Ngoc Tran. (2018a). K-Medoids algorithm used for english sentiment classification in a distributed system. Computer Modelling and New Technologies, 22(1), 20–39.Google Scholar
  20. Vo Ngoc Phu, & Vo Thi Ngoc Tran. (2018b). English sentiment classification using a Gower-2 coefficient and a genetic algorithm with a fitness-proportionate selection in a parallel network environment. Journal of Theoretical and Applied Information Technology, 96(4), 1–50.Google Scholar
  21. Vo Ngoc Phu, & Vo Thi Ngoc Tran. (2018c). A reformed K-nearest neighbors algorithm for big data sets. Journal of Computer Science, 14(5), 13.  https://doi.org/10.3844/jcssp.2018.CrossRefGoogle Scholar
  22. Vo Ngoc Phu, & Vo Thi Ngoc Tran. (2018d). Latent semantic analysis using a Dennis coefficient for English sentiment classification in a parallel system. International Journal of Computers, Communications and Control, 13(3), 390–410.Google Scholar
  23. Vo Ngoc Phu, & Vo Thi Ngoc Tran. (2018e). The multi-dimensional vectors and an yule-II measure used for a self-organizing map algorithm of English sentiment classification in a distributed environment. Journal of Theoretical and Applied Information Technology, 96(10), 54.Google Scholar
  24. Vo Ngoc Phu, & Vo Thi Ngoc Tran. (2018f). English sentiment classification using a Fager & MacGowan coefficient and a genetic algorithm with a rank selection in a parallel network environment. Computer Modelling and New Technologies ISSN 1407-5814, 1407-5806,, 22(1), 57–112.Google Scholar
  25. Vo Ngoc Phu, & Vo Thi Ngoc Tran. (2018g). English sentiment classification using a BIRCH algorithm and the sentiment lexicons-based one-dimensional vectors in a parallel network environment. International Journal of Computer Modelling and New Technologies, 22(1), 41.Google Scholar
  26. Vo Ngoc Phu, & Vo Thi Ngoc Tran. (2018h). Sentiment classification using the sentiment scores of lexicons based on a Kuhns-II coefficient in English. International Journal of Tomography & Simulation, 31(3), 47.Google Scholar
  27. Vo Ngoc Phu, & Vo Thi Ngoc Tran. (2018i). English sentiment classification using an YULEQ similarity measure and the one-dimensional vectors in a parallel network environment. Journal of Theoretical and Applied Information Technology ISSN 1992-8645, 1817-3195,, 96(10), 26.Google Scholar
  28. Vo Ngoc Phu, & Vo Thi Ngoc Tran. (2018j). A fuzzy C-means algorithm and sentiment-lexicons-based multi-dimensional vectors of a SOKAL & SNEATH-IV coefficient used for English sentiment classification. Journal of Theoretical and Applied Information Technology, 96(10), 25.Google Scholar
  29. Vo Ngoc Phu, & Vo Thi Ngoc Tran. (2018k). A self-training - based model using a K-NN algorithm and the sentiment lexicons - based multi-dimensional vectors of a S6 coefficient for sentiment classification. Journal of Theoretical and Applied Information Technology, 96(10), 44.Google Scholar
  30. Vo Ngoc Phu, Nguyen DuyDat, Vo Thi Ngoc Tran, Vo Thi Ngoc Chau, & Tuan A. Nguyen. (2017). Fuzzy C-means for english sentiment classification in a distributed system. International Journal of Applied Intelligence (APIN), 46(3), 717–738.  https://doi.org/10.1007/s10489-016-0858-z.CrossRefGoogle Scholar
  31. Vo Ngoc Phu, Vo Thi Ngoc Tran, & Jack Max. (2018). A CURE algorithm for Vietnamese sentiment classification in a parallel environment. International Journal of Computer Science, 14(4), 23.  https://doi.org/10.3844/jcssp.2018.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Research and DevelopmentDuy Tan University-DTUDa NangVietnam
  2. 2.School of Industrial Management (SIM), Ho Chi Minh City University of Technology – HCMUTVietnam National UniversityHo Chi Minh CityVietnam

Personalised recommendations