Multilevel Coding for Multiple Input Multiple Output System

  • K. KavithaEmail author
  • H. Mangalam
Part of the EAI/Springer Innovations in Communication and Computing book series (EAISICC)


The future wireless communication system focuses on high data rate and reliability to cater the next generation technologies such as internet of things (IoT), real time voice calls etc., which would produce enormous real time multimedia data. In order to overcome the challenges, next generation wireless communication systems rely on MIMO techniques, which provide improved capacity without sacrificing the power and bandwidth. Many novel signal processing techniques have evolved in the past two decades for MIMO systems such as Spatial Multiplexing (SML), Space Time Coding (STC), Antenna Beamforming, Spatial Modulation (SM) and hybridization of the above mentioned techniques. In all these techniques, the computational complexity is the major problem when a high data rate is considered. This chapter focuses on computational complexity of the multilevel MIMO system and also investigates the performance of the multilevel MIMO system over varied channel conditions. Variations of Multilevel MIMO technique such as multilevel spatial modulation (MLSM) and Hybrid Multilevel (HML) Modulation scheme have been investigated and analyzed with low complex sequential decoding algorithm. Further, multilevel MIMO-OFDM systems MLSTTC-OFDM, MLSM-OFDM and HML-OFDM have also been compared.


MIMO Space-time coding Spatial modulation Antenna diversity OFDM Multilevel coding Multistage decoding Viterbi algorithm Sequential decoding 


  1. Agrawal, D., Tarokh, V., Naguib, A., & Seshadri, N. (1998). Space-time coded OFDM for high data-rate wireless communication over wideband channels. IEEE Vehicular Technology Conference, 3, 2232–2236. Scholar
  2. Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal of Selected Areas in Communications, 16(8), 1451–1458.CrossRefGoogle Scholar
  3. Baghaie, M. A. (2008). Multilevel space time trellis codes for Rayleigh fading channels (ME thesis). University of Canterbury, New Zealand.Google Scholar
  4. Baghaie, M. A., Martin, P. A., & Taylor, D. P. (2010). Grouped multilevel space time trellis codes. IEEE Communications Letter, 14(3), 232–234.CrossRefGoogle Scholar
  5. Bäro, S., Bauch, G., & Hansmann, A. (2000). Improved codes for space–time trellis-coded modulation. IEEE Communications Letters, 4(1), 20–22.CrossRefGoogle Scholar
  6. Basar, E., Aygolu, U., Panayirci, E., & Poor, V. H. (2011a). New trellis code design for spatial modulation. IEEE Transactions on Wireless Communications, 10(8), 2670–2680.CrossRefGoogle Scholar
  7. Basar, E., Aygölü, U., Panayırcı, E., & Poor, V. H. (2011b). Space-time block coded spatial modulation. IEEE Transactions on Communications, 59(3), 823–832.zbMATHCrossRefGoogle Scholar
  8. Calderbank, A. R. (1989). Multilevel codes and multistage decoding. IEEE Transactions on Communications, 37(3), 222–229.MathSciNetzbMATHCrossRefGoogle Scholar
  9. Calderbank, A. R. (1998). The art of signalling: Fifty years of coding theory. IEEE Transactions on Information Theory, 44(6), 2561–2595.MathSciNetzbMATHCrossRefGoogle Scholar
  10. Chen, Z., Yuan, J., & Vucetic, B. (2001). An improved space-time trellis coded modulation scheme on slow Rayleigh fading channels. Proceeding of IEEE International Conference on Communications, 4(0), 1110–1116. Scholar
  11. Fochini, G. J. (1996). Layered space time architecture for wireless communication in a fading environment when using multi element antenna. Bell Labs Technical Journal, 1(2), 41–59.CrossRefGoogle Scholar
  12. Foschini, G. J., & Gans, M. J. (1998). On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 6(3), 311–335.CrossRefGoogle Scholar
  13. Goldsmith, A. (2005). Wireless communications. New York: Cambridge University Press.CrossRefGoogle Scholar
  14. Gore, D. A., & Paulraj, A. J. (2002). MIMO antenna subset selection with space time coding. IEEE Transactions on Signal Processing, 50(10), 2580–2588.CrossRefGoogle Scholar
  15. Humadi, K. M., Sulyman, A. I., & Alsanie, A. (2014). Spatial modulation concept for massive multiuser MIMO systems, International Journal of Antennas and Propagation, 2014, Article ID 563273, 1–9.CrossRefGoogle Scholar
  16. Jeganathan, J., Ghrayeb, A., & Szczecinski, L. (2008). Generalized space shift keying modulation for MIMO channels. IEEE PIMRC, 1–5.
  17. Jain, D., & Sharma, S. (2013). Adaptive generator sequence selection in multilevel space–time trellis codes. Wireless Personal Communications, 75(4), 1851–1862.CrossRefGoogle Scholar
  18. Jain, D., & Sharma, S. (2014). Adaptively grouped multilevel space-time trellis codes. Wireless Personal Communications, 74, 415–426.CrossRefGoogle Scholar
  19. Kavitha, K., & Mangalam, H. (2014). Multilevel spatial multiplexing –space time trellis coded modulation system for fast fading MIMO Channel. International Journal of Engineering and Technology, 6(1), 217–222.Google Scholar
  20. Kavitha, K., & Mangalam, H. (2016a). Low complexity decoding algorithm for multilevel space time trellis codes over MIMO channel. International Journal of Information and Communication Technology, 8(1), 69–78.CrossRefGoogle Scholar
  21. Kavitha, K., & Mangalam, H. (2016b). Multilevel spatial modulation. Journal of the Chinese Institute of Engineers, 39(6), 713–721. Scholar
  22. Kavitha, K., Kumaresan, A., & Arun Kumar, S. (2017). Performance analysis of multilevel spatial modulation OFDM technique (MLSM-MIMO). International Journal of Pure and Applied Mathematics, 116(11), 101–109.Google Scholar
  23. Lampe, L. H. J., Schober, R., & Fischer, R. F. H. (2004). Multilevel coding for multiple-antenna transmission. IEEE Transactions on Wireless Communications, 3(1), 203–208.CrossRefGoogle Scholar
  24. Li, Y. G., Winters, J. H., & Sollenberger, N. R. (2002). MIMO-OFDM for wireless communications: Signal detection with enhanced channel estimation. IEEE Transactions on Communications, 50(9), 1471–1477.CrossRefGoogle Scholar
  25. Li, C. M., Li, G. W., & Liu, H. Y. (2012). Performance comparison of the STBCOFDM decoders in a fast fading channel. Journal of Marine Science and Technology, 20(5), 534–540.Google Scholar
  26. Lozano, A., & Papadias, C. (2002). Layered space–time receivers for frequency-selective wireless channels. IEEE Transactions on Communications, 50, 65–73.CrossRefGoogle Scholar
  27. Ma, S.-C. (2013). Extended space-time multilevel coded spatial modulation. Journal of the Chinese Institute of Engineers, 36(6), 715–720.CrossRefGoogle Scholar
  28. Martin, P. A., Rankin, D. M., & Taylor, D. P. (2006). Multi-dimensional space-time multilevel codes. IEEE Transactions on Wireless Communications, 5(11), 3287–3295.CrossRefGoogle Scholar
  29. Mesleh, R. Y., Haas, H., Sinanovi’c, S., Ahn, C. W., & Yun, S. (2008). Spatial modulation. IEEE Transactions on Vehicular Technology, 57(4), 2228–2241.CrossRefGoogle Scholar
  30. Mesleh, R., Renzo, M. D., Haas, H., & Grant, P. M. (2010). Trellis coded spatial modulation. IEEE Transactions on Wireless Communications, 9(7), 2349–2360.CrossRefGoogle Scholar
  31. Mietzner, J., Schober, R., Lampe, L., Gerstacker, W. H., & Hoeher, P. A. (2009). Multiple-antenna techniques for wireless communications - A comprehensive literature survey. IEEE communications Surveys & Tutorials, 11(2), 87–105.CrossRefGoogle Scholar
  32. Pourahmadi, V., Motahari, A. S., & Khandani, A. K. (2013). Multilayer codes for broadcasting over quasi-static fading MIMO networks. IEEE Transactions on Communications, 61(4), 1573–1783.CrossRefGoogle Scholar
  33. Renzo, M. D., & Haas, H. (2010). Performance comparison of different spatial modulation schemes in correlated fading channels. In: Proceeding of IEEE International Conference on Communications, 1–6.
  34. Renzo, M. D., & Haas, H. (2012). Bit error probability of SM-MIMO over generalized fading channels. IEEE Transactions on Vehicular Technology, 61(3), 1124–1144.CrossRefGoogle Scholar
  35. Renzo, M. D., Haas, H., & Grant, P. M. (2011). Spatial modulation for multiple-antenna wireless systems: A survey. IEEE Communications Magazine, 49, 182–191. Scholar
  36. Rusek, F., Persson, D., Lau, B. K., Larsson, E., Marzetta, T., Edfors, O., & Tufvesson, F. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.CrossRefGoogle Scholar
  37. Sampath, H., Talwar, S., Tellado, J., Erceg, V., & Paulraj, A. (2002). A fourth generation MIMO-OFDM broadband wireless system design, performance, and field trial results. IEEE Communications Magazines, 40, 143–149.CrossRefGoogle Scholar
  38. Serafemovski, N., Renzo, M. D., Sinanovic, S., Mesleh, R., & Haas, H. (2010). Fractional Bit Encoded Spatial Modulation (FBE-SM). IEEE Communications Letters, 14(5), 429–431.CrossRefGoogle Scholar
  39. Slaney, A., & Sun, Y. (2006). Space-time coding for wireless communications: An overview. IEE Proceedings of Communications, 153(4), 509–518.CrossRefGoogle Scholar
  40. Sharma, S. (2012). A novel weighted multilevel space time trellis coding Scheme. Journal of Computer and Mathematics with Applications, 63(1), 280–287.MathSciNetzbMATHCrossRefGoogle Scholar
  41. Stüber, G. L., Barry, J. R., Mclaughlin, S. W., Li, Y. G., Ingram, M. A., & Pratt, T. G. (2004). Broadband MIMO-OFDM wireless communications. Proceedings of IEEE, 92(2), 271–294.CrossRefGoogle Scholar
  42. Sugiura, S., Chen, S., & Hanzo, L. (2012). A universal space-time architecture for multiple-antenna aided systems. IEEE Communications Surveys & Tutorials, 12(2), 401–420.CrossRefGoogle Scholar
  43. Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space-time codes for high data rate wireless communication: Performance analysis and code construction. IEEE Transactions on Information Theory, 44(2), 744–765.MathSciNetzbMATHCrossRefGoogle Scholar
  44. Tarokh, V., Naquib, A., Seshadri, N., & Calderbank, A. R. (1999). Combined array processing and space time coding. IEEE Transactions on Information Theory, 45(4), 1121–1128.MathSciNetzbMATHCrossRefGoogle Scholar
  45. Tee, R. Y. S., Alamri, O. R., Ng, S. X., & Hanzo, L. (2008). Equivalent capacity-based joint multilevel coding and space–time transmit diversity design. IEEE Transactions on Vehicular Technology, 57(5), 3006–3014.CrossRefGoogle Scholar
  46. Telatar, E. (1995). Capacity of multi antenna Gaussian channels. European Transactions on Telecommunications, 10(6), 585–595.MathSciNetCrossRefGoogle Scholar
  47. Ungerbock, G. (1982). Channel coding with multilevel/phase signal. IEEE Transactions on Information Theory, 28(1), 55–67.CrossRefGoogle Scholar
  48. Wachsmann, U., Fischer, F. H., & Huber, J. B. (1999). Multilevel codes: Theoretical concepts and practical design rules. IEEE Transactions on Information Theory, 45(5), 1361–1391.MathSciNetzbMATHCrossRefGoogle Scholar
  49. Winters, J. H. (1998). The diversity gain of transmit diversity in wireless systems with Rayleigh fading. IEEE Transactions on Vehicular Technology, 47(1), 119–123.CrossRefGoogle Scholar
  50. Wolniansky, P., Foschini, G., Golden, G., & Valenzuela, R. (1998). V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel. URSI International Symposium- Signals, Systems, Electronics, 295–300.Google Scholar
  51. Yang, P., Xiao, Y., Yu, Y., & Li, S. (2011). Adaptive spatial modulation for wireless MIMO transmission systems. IEEE Communications Letters, 15(6), 602–604.CrossRefGoogle Scholar
  52. Yonnis, A., Serafimovski, N., Mesleh, R., & Haas, H. (2010). Generalised spatial modulation. In: Proceeding of IEEE Asilomar Conference, Signals Systems and Computers, 1498–1502.
  53. Zhang, P., Yuan, D., & Zhang, H. (2012). A novel spatial modulation scheme over correlated fading channels. Journal of Communications, 7(11), 847–857.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ECEKumaraguru College of TechnologyCoimbatoreIndia
  2. 2.Department of ECESri Ramakrishna Institute of TechnologyCoimbatoreIndia

Personalised recommendations