Execution of Multi-perspective Declarative Process Models

  • Lars Ackermann
  • Stefan SchönigEmail author
  • Sebastian Petter
  • Nicolai Schützenmeier
  • Stefan Jablonski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11230)


A Process-Aware Information System is a system that executes processes involving people, applications, and data on the basis of process models. At least two process modeling paradigms can be distinguished: procedural models define exactly the execution order of process steps. Declarative process models allow flexible process executions that are restricted by constraints. Execution engines for declarative process models have been extensively investigated in research with a strong focus on behavioral aspects. However, execution approaches for multi-perspective declarative models that involve constraints on data values and resource assignments are still not existing. In this paper, we present an approach for the execution of multi-perspective declarative process models in order to close this gap. The approach builds on a classification strategy for different constraint types evaluating their relevance in different execution contexts. For execution, all constraints are transformed into the execution language Alloy that is used to solve satisfiability (SAT) problems. We implemented a modeling tool including the transformation functionality and the process execution engine itself. The approach has been evaluated in terms of expressiveness and efficiency.


Processes execution Declarative modeling Multi-perspective 


  1. 1.
    Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: Declare: full support for loosely-structured processes. In: IEEE International EDOC Conference 2007, pp. 287–300 (2007)Google Scholar
  2. 2.
    Hildebrandt, T.T., Mukkamala, R.R., Slaats, T., Zanitti, F.: Contracts for cross-organizational workflows as timed dynamic condition response graphs. J. Log. Algebr. Program. 82(5–7), 164–185 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Zeising, M., Schönig, S., Jablonski, S.: Towards a common platform for the support of routine and agile business processes. In: Collaborative Computing: Networking, Applications and Worksharing (2014)Google Scholar
  4. 4.
    Schönig, S., Ackermann, L., Jablonski, S.: Towards an implementation of data and resource patterns in constraint-based process models. In: Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development, pp. 271–278. SciTePress (2018)Google Scholar
  5. 5.
    Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.M.P.: Discovering simulation models. Inf. Syst. 34(3), 305–327 (2009)CrossRefGoogle Scholar
  6. 6.
    de Leoni, M., van der Aalst, W.M.P., Dees, M.: A general process mining framework for correlating, predicting and clustering dynamic behavior based on event logs. Inf. Syst. 56, 235–257 (2016)CrossRefGoogle Scholar
  7. 7.
    Burattin, A., Maggi, F.M., Sperduti, A.: Conformance checking based on multi-perspective declarative process models. Expert Syst. Appl. 65, 194–211 (2016)CrossRefGoogle Scholar
  8. 8.
    van der Aalst, W., Pesic, M., Schonenberg, H.: Declarative workflows: balancing between flexibility and support. CSRD 23, 99–113 (2009)Google Scholar
  9. 9.
    Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.: Declarative specification and verification of service choreographies. ACM Trans. Web 4(1), 3 (2010)CrossRefGoogle Scholar
  10. 10.
    Burattin, A., Maggi, F.M., van der Aalst, W.M., Sperduti, A.: Techniques for a posteriori analysis of declarative processes. In: EDOC, Beijing, pp. 41–50. IEEE, September 2012Google Scholar
  11. 11.
    van der Aalst, W.: Process Mining: Data Science in Action. Springer, Heidelberg (2016). Scholar
  12. 12.
    Warmer, J.B., Kleppe, A.G.: The Object Constraint Language: Precise Modeling With UML (Addison-Wesley OTS). Addison-Wesley Professional, Boston (1998)Google Scholar
  13. 13.
    Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press, Cambridge (2012)Google Scholar
  14. 14.
    Ackermann, L., Schönig, S., Jablonski, S.: Simulation of multi-perspective declarative process models. In: Dumas, M., Fantinato, M. (eds.) BPM 2016. LNBIP, vol. 281, pp. 61–73. Springer, Cham (2017). Scholar
  15. 15.
    Bussler, C.: Analysis of the organization modeling capability of workflow-management-systems. In: PRIISM 1996 Conference Proceedings, pp. 438–455 (1996)Google Scholar
  16. 16.
    Lamma, E., Mello, P., Riguzzi, F., Storari, S.: Applying inductive logic programming to process mining. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 132–146. Springer, Heidelberg (2008). Scholar
  17. 17.
    Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting inductive logic programming techniques for declarative process mining. In: Jensen, K., van der Aalst, W.M.P. (eds.) Transactions on Petri Nets and Other Models of Concurrency II. LNCS, vol. 5460, pp. 278–295. Springer, Heidelberg (2009). Scholar
  18. 18.
    Westergaard, M., Maggi, F.M.: Looking into the future: using timed automata to provide a priori advice about timed declarative process models. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7565, pp. 250–267. Springer, Heidelberg (2012). Scholar
  19. 19.
    Montali, M., Chesani, F., Mello, P., Maggi, F.M.: Towards data-aware constraints in declare. In: SAC, pp. 1391–1396. ACM (2013)Google Scholar
  20. 20.
    Schönig, S., Di Ciccio, C., Maggi, F.M., Mendling, J.: Discovery of multi-perspective declarative process models. In: Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 87–103. Springer, Cham (2016). Scholar
  21. 21.
    Skydanienko, V., Francescomarino, C.D., Maggi, F.: A tool for generating event logs from multi-perspective declare models. In: BPM (Demos) (2018)Google Scholar
  22. 22.
    Montali, M.: Specification and Verification of Declarative Open Interaction Models: A Logic-Based Approach, vol. 56. Springer, Heidelberg (2010). Scholar
  23. 23.
    Hildebrandt, T., Mukkamala, R.R., Slaats, T., Zanitti, F.: Contracts for cross-organizational workflows as timed dynamic condition response graphs. J. Log. Algebr. Program. 82(5), 164–185 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Slaats, T., Mukkamala, R.R., Hildebrandt, T., Marquard, M.: Exformatics declarative case management workflows as DCR graphs. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 339–354. Springer, Heidelberg (2013). Scholar
  25. 25.
    Goedertier, S., Haesen, R., Vanthienen, J.: Rule-based business process modelling and enactment. Int. J. Bus. Process Integr. Manag. 3(3), 194–207 (2008)CrossRefGoogle Scholar
  26. 26.
    Hull, R., Damaggio, E., et al.: Business artifacts with guard-stage-milestone lifecycles: managing artifact interactions with conditions and events. In: International Conference on Distributed Event-Based System (2011)Google Scholar
  27. 27.
    Hewelt, M., Weske, M.: A hybrid approach for flexible case modeling and execution. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNBIP, vol. 260, pp. 38–54. Springer, Cham (2016). Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Lars Ackermann
    • 1
  • Stefan Schönig
    • 1
    Email author
  • Sebastian Petter
    • 1
  • Nicolai Schützenmeier
    • 1
  • Stefan Jablonski
    • 1
  1. 1.University of BayreuthBayreuthGermany

Personalised recommendations