Advertisement

In the Search of Quality Influence on a Small Scale – Micro-influencers Discovery

  • Monika Ewa Rakoczy
  • Amel Bouzeghoub
  • Alda Lopes Gancarski
  • Katarzyna Wegrzyn-Wolska
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11230)

Abstract

Discovery and detection of different social behaviors, such as influence in on-line social networks, have drawn much focus in the current research. While there are many methods tackling the issue of influence evaluation, most of them base on the underline assumption that a large audience is indispensable for an influencer to have much impact. However, in many cases, users with smaller but highly involved audience still are highly impactful. In this work, we target a novel problem of finding micro-influencers – exactly those users that have much influence on others despite of a limited range of followers. Therefore, we propose a new concept of micro-influencers in the context of Social Network Analysis, define the notion and present a flexible method aiming to discover them. The approach is tested on two real-world datasets of Facebook [24] and Pinterest [31]. The established results are promising and demonstrate the usefulness of the micro-influencer-oriented approach for potential applications.

Keywords

Micro-influence Influence Social scoring Social Network Analysis 

References

  1. 1.
    How brands can reach new audiences with micro-influencers. http://markerly.com/blog/instagram-marketing-does-influencer-size-matter/. Accessed 13 July 2018
  2. 2.
    Influenster. https://hwww.influenster.com/disclosure. Accessed 12 July 2018
  3. 3.
    Takumi branded instagram creative at scale. https://takumi.com/. Accessed 12 July 2018
  4. 4.
    Tribe influencer marketing martekplace. https://www.tribegroup.co/. Accessed 12 July 2018
  5. 5.
    Aleahmad, A., Karisani, P., Rahgozar, M., Oroumchian, F.: OLFinder: finding opinion leaders in online social networks. J. Inf. Sci. 42(5), 659–674 (2016)CrossRefGoogle Scholar
  6. 6.
    Côté, I.M., Darling, E.S.: Scientists on Twitter: preaching to the choir or singing from the rooftops? FACETS 3(1), 682–694 (2018).  https://doi.org/10.1139/facets-2018-0002CrossRefGoogle Scholar
  7. 7.
    Ding, Z.Y., Jia, Y., Zhou, B., Han, Y., He, L., Zhang, J.F.: Measuring the spreadability of users in microblogs. J. Zhejiang Univ. Sci. C 14(9), 701–710 (2013)CrossRefGoogle Scholar
  8. 8.
    Gee, R.: Top 20 celebrity endorsers: the rise of the influencer. Marketing Week. https://www.marketingweek.com/2017/01/24/top-20-endorsers-2016/. Accessed 12 July 2018
  9. 9.
    Ben Jabeur, L., Tamine, L., Boughanem, M.: Active microbloggers: identifying influencers, leaders and discussers in microblogging networks. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 111–117. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34109-0_12CrossRefGoogle Scholar
  10. 10.
    Jendoubi, S., Martin, A., Liétard, L., Hadji, H.B., Yaghlane, B.B.: Two evidential data based models for influence maximization in Twitter. Knowl.-Based Syst. 121, 58–70 (2017)CrossRefGoogle Scholar
  11. 11.
    Jiang, W., Wang, G., Bhuiyan, M.Z.A., Wu, J.: Understanding graph-based trust evaluation in online social networks: methodologies and challenges. ACM Comput. Surv. (CSUR) 49(1), 10 (2016)CrossRefGoogle Scholar
  12. 12.
    Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence through a social network. Theor. Comput. 11(4), 105–147 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kitsak, M., et al.: Identification of influential spreaders in complex networks. arXiv preprint arXiv:1001.5285 (2010)
  14. 14.
    Lin, H.C., Bruning, P.F., Swarna, H.: Using online opinion leaders to promote the hedonic and utilitarian value of products and services. Bus. Horiz. 61(3), 431–442 (2018)CrossRefGoogle Scholar
  15. 15.
    Muuga, E.: How to find instagram influencers in your niche (by using data). https://www.magimetrics.com/guides.html/find-instagram-influencers/. Accessed 13 July 2018
  16. 16.
    Myers, S.A., Zhu, C., Leskovec, J.: Information diffusion and external influence in networks. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 33–41. ACM (2012)Google Scholar
  17. 17.
    Nagmoti, R., Teredesai, A., De Cock, M.: Ranking approaches for microblog search. In: Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology-Volume 01, pp. 153–157. IEEE Computer Society (2010)Google Scholar
  18. 18.
    Ohsaka, N., Akiba, T., Yoshida, Y., Kawarabayashi, K.I.: Dynamic influence analysis in evolving networks. Proc. VLDB Endow. 9(12), 1077–1088 (2016)CrossRefGoogle Scholar
  19. 19.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web. Technical report, Stanford InfoLab (1999)Google Scholar
  20. 20.
    Rakoczy, M., Bouzeghoub, A., Lopes, A.G., Wegrzyn-Wolska, K.: Technical Report: Influence Model Based on Actions and Reactions in Social Networks, August 2018. https://hal.archives-ouvertes.fr/hal-01865770
  21. 21.
    Rakoczy, M., Bouzeghoub, A., Wegrzyn-Wolska, K., Gancarski Lopes, A.: Users views on others - analysis of confused relation-based terms in social network. In: Debruyne, C., et al. (eds.) OTM 2016. LNCS, vol. 10033, pp. 155–174. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48472-3_9CrossRefGoogle Scholar
  22. 22.
    Rashotte, L.: Blackwell Encyclopedia of Sociology Online: Influence. http://www.sociologyencyclopedia.com/fragr_image/media/social. Accessed 27 Apr 2016
  23. 23.
    Riquelme, F., González-Cantergiani, P.: Measuring user influence on Twitter: a survey. Inf. Process. Manag. 52(5), 949–975 (2016)CrossRefGoogle Scholar
  24. 24.
    Spasojevic, N., Li, Z., Rao, A., Bhattacharyya, P.: When-to-post on social networks. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2127–2136. ACM (2015)Google Scholar
  25. 25.
    Tantipathananandh, C., Berger-Wolf, T.Y.: Finding communities in dynamic social networks. In: 2011 IEEE 11th International Conference on Data Mining (ICDM), pp. 1236–1241. IEEE (2011)Google Scholar
  26. 26.
    Mediakix Team: What are “micro influencers”? definition & examples. http://mediakix.com/2017/07/what-are-micro-influencers/. Accessed 13 July 2018
  27. 27.
    Wissman, B.: Micro-influencers: the marketing force of the future? Forbes. https://www.forbes.com/sites/barrettwissman/2018/03/02/micro-influencers-the-marketing-force-of-the-future/. Accessed 13 July 2018
  28. 28.
    Wu, X., et al.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2008)CrossRefGoogle Scholar
  29. 29.
    Zafarani, R., Abbasi, M.A., Liu, H.: Social Media Mining: An Introduction. Cambridge University Press, Cambridge (2014)Google Scholar
  30. 30.
    Zhang, Y., Li, X., Wang, T.W.: Identifying influencers in online social networks: the role of tie strength. Int. J. Intell. Inf. Technol. (IJIIT) 9(1), 1–20 (2013)CrossRefGoogle Scholar
  31. 31.
    Zhong, C., Shah, S., Sundaravadivelan, K., Sastry, N.: Sharing the loves: understanding the how and why of online content curation. In: 7th International AAAI Conference on Weblogs and Social Media (ICWSM13), Boston, US, July 2013Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Monika Ewa Rakoczy
    • 1
  • Amel Bouzeghoub
    • 1
  • Alda Lopes Gancarski
    • 1
  • Katarzyna Wegrzyn-Wolska
    • 2
  1. 1.SAMOVAR, CNRS, Telecom SudParisEvryFrance
  2. 2.AlliansTIC, Efrei ParisVillejuifFrance

Personalised recommendations