Advertisement

Laboratory-Scale Microgrid System for Control of Power Distribution in Local Energy Networks – Part I: Theory and Design

  • Rasel Mahmud
  • Arash NejadpakEmail author
Chapter

Abstract

One of the promising solutions to achieve sustainable energy systems in future smart cities is to deploy microgrids in local energy networks. Due to the decentralized nature of microgrids, large-scale utilization of these resources will increase the reliability of the energy systems as well as facilitating the integration of renewable energy resources to enable more environmentally-friendly energy network. This chapter presents development of a highly reconfigurable, laboratory–scale microgrid testbed. The proposed microgrid system integrates several distributed generation (DG) units representing photovoltaic panel, wind turbine, battery energy storage and etc. The schematic of the proposed system can be customized to investigate numerous grid architectures and control scenarios. In this study, the loads and energy resource allocation are realized by assessment of the loads and resources priority. Therefore, a hierarchical procedure will take place to allocate the power to different buses in microgrid. In the next chapter, we describe the test-bed implementation of the designed microgrid.

Keywords

Microgrid Design Hardware Testbed Distributed generation 

References

  1. 1.
    T. S. Ustun, C. Ozansoy, and A. Zayegh, “Recent developments in microgrids and example cases around the world—A review,” Renew. Sustain. Energy Rev., vol. 15, no. 8, pp. 4030–4041, Oct 2011.CrossRefGoogle Scholar
  2. 2.
    C. E. Commission, “Certs microgrid laboratory test bed,” Energy, vol. 26, no. February, pp. 1–8, 2009.Google Scholar
  3. 3.
    L. Meng, A. Luna, E. Diaz, B. Sun, T. Dragicevic, M. Savaghebi, J. Vasquez, J. Guerrero, and M. Graells, “Flexible System Integration and Advanced Hierarchical Control Architectures in the Microgrid Research Laboratory of Aalborg University,” IEEE Trans. Ind. Appl., vol. 52, no. 2, pp. 1–1, 2015.CrossRefGoogle Scholar
  4. 4.
    B. Zhao, X. Zhang, and J. Chen, “Integrated microgrid laboratory system,” IEEE Trans. Power Syst., vol. 27, no. 4, pp. 2175–2185, 2012.CrossRefGoogle Scholar
  5. 5.
    V. Salehi, A. Mohamed, A. Mazloomzadeh, and O. A. Mohammed, “Laboratory-based smart power system, part I: Design and system development,” IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 1394–1404, 2012.CrossRefGoogle Scholar
  6. 6.
    C. Wang, X. Yang, Z. Wu, Y. Che, L. Guo, S. Zhang, and Y. Liu, “A Highly Integrated and Reconfigurable Microgrid Testbed with Hybrid Distributed Energy Sources,” IEEE Trans. Smart Grid, vol. 7, no. 1, pp. 451–459, 2014.CrossRefGoogle Scholar
  7. 7.
    S. S. Thale, R. G. Wandhare, and V. Agarwal, “A Novel Reconfigurable Microgrid Architecture With Renewable Energy Sources and Storage,” IEEE Trans. Ind. Appl., vol. 51, no. 2, pp. 1805–1816, 2015.CrossRefGoogle Scholar
  8. 8.
    G. Turner, J. P. Kelley, C. L. Storm, D. A. Wetz, and W. J. Lee, “Design and active control of a microgrid testbed,” IEEE Trans. Smart Grid, vol. 6, no. 1, pp. 73–81, 2015.CrossRefGoogle Scholar
  9. 9.
    F. Guo, L. Herrera, M. Alsolami, H. Li, P. Xu, X. Lu, A. Lang, J. Wang, and Z. Long, “Design and development of a reconfigurable hybrid Microgrid testbed,” in 2013 IEEE Energy Conversion Congress and Exposition, 2013, pp. 1350–1356.CrossRefGoogle Scholar
  10. 10.
    A. Vukojevic, S. Laval, and J. Handley, “An integrated utility microgrid test site ecosystem optimized by an open interoperable distributed intelligence platform,” in 2015 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), 2015, pp. 1–5.Google Scholar
  11. 11.
    S. Bracco, F. Delfino, F. Pampararo, M. Robba, and M. Rossi, “The University of Genoa smart polygeneration microgrid test-bed facility: The overall system, the technologies and the research challenges,” Renew. Sustain. Energy Rev., vol. 18, pp. 442–459, Feb 2013.CrossRefGoogle Scholar
  12. 12.
    D. De and S. K. Das, “A wireless smart grid testbed in lab,” IEEE Wirel. Commun., vol. 19, no. 3, pp. 58–64, Jun 2012.CrossRefGoogle Scholar
  13. 13.
    “DC Power Supply Products - High Voltage and High Current | Magna-Power.” [Online]. Available: http://www.magna-power.com/products. [Accessed: 18-May-2016].
  14. 14.
    “XDC 6000 Watt and 12000 Watt Series Digital Programmable DC Power Supply.” [Online]. Available: http://www.programmablepower.com/products/XDC/downloads/XDC_6kW_12kW_User_Guide_XDOP-01XN.pdf. [Accessed: 18-May-2016].
  15. 15.
    “Programmable AC Power Source Model 61511/61512/61611/61612.” [Online]. Available: http://www.chromausa.com/pdf/Br-61611+61612-acsource-022011.pdf. [Accessed: 18-May-2016].
  16. 16.
    A. Koran and K. Sano, “Design of a Photovoltaic Simulator With a Novel Reference Signal Generator and Two-Stage LC Output Filter,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1331–1338, May 2010.CrossRefGoogle Scholar
  17. 17.
    Qingrong Zeng, Pinggang Song, and Liuchen Chang, “A photovoltaic simulator based on DC chopper,” in IEEE CCECE2002. Canadian Conference on Electrical and Computer Engineering. Conference Proceedings (Cat. No.02CH37373), 2002, vol. 1, pp. 257–261.CrossRefGoogle Scholar
  18. 18.
    M. Park and I.-K. Yu, “A Novel Real-Time Simulation Technique of Photovoltaic Generation Systems Using RTDS,” IEEE Trans. Energy Convers., vol. 19, no. 1, pp. 164–169, Mar 2004.CrossRefGoogle Scholar
  19. 19.
    E. Koutroulis, K. Kalaitzakis, and V. Tzitzilonis, “Development of an FPGA-based System for Real-Time Simulation of Photovoltaic Modules,” in Seventeenth IEEE International Workshop on Rapid System Prototyping (RSP’06), 2006, pp. 200–208.CrossRefGoogle Scholar
  20. 20.
    M. G. Villalva, J. R. Gazoli, and E. R. Filho, “Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1198–1208, May 2009.CrossRefGoogle Scholar
  21. 21.
    S. Farag, C. Lerman, S. Lineykin, and A. Kuperman, “Off-the-shelf-Power-Supply-based Battery-Supercapacitor Emulator for Charger Functionality Testing,” IEEE Trans. Transp. Electrif., vol. PP, no. 99, pp. 1–1, 2016.Google Scholar
  22. 22.
    T. Kim and W. Qiao, “A Hybrid Battery Model Capable of Capturing Dynamic Circuit Characteristics and Nonlinear Capacity Effects,” IEEE Trans. Energy Convers., vol. 26, no. 4, pp. 1172–1180, Dec 2011.CrossRefGoogle Scholar
  23. 23.
    K. Nguyen-Duy, A. Knott, and M. A. E. Andersen, “High Dynamic Performance Nonlinear Source Emulator,” IEEE Trans. Power Electron., vol. 31, no. 3, pp. 2562–2574, Mar 2016.CrossRefGoogle Scholar
  24. 24.
    L. H.-W. L. J.-G. K. S.-H. S. Eun-Kyung, “Implementation of Fuel Cell Dynamic Simulator,” in 37th IEEE Power Electronics Specialists Conference, 2006, pp. 1–5.Google Scholar
  25. 25.
    linkchain. t. co., “Chroma ATE Inc. | English,” Jan. 2012.Google Scholar
  26. 26.
    “SEMIKRON Online Shop | SEMITEACH B6U+E1CIF+B6CI | Buy Power Modules online!” [Online]. Available: http://shop.semikron.com/en/Products-and-Shop/Product-Groups/STACKs/SEMITEACH/SEMITEACH-B6U-E1CIF-B6CI.html. [Accessed: 19-May-2016].
  27. 27.
    K. Jalili and S. Bernet, “Design of LCL Filters of Active-Front-End Two-Level Voltage-Source Converters,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1674–1689, May 2009.CrossRefGoogle Scholar
  28. 28.
    A. Reznik, M. G. Simoes, A. Al-Durra, and S. M. Muyeen, “LCL Filter design and performance analysis for grid-interconnected systems,” IEEE Trans. Ind. Appl., vol. 50, no. 2, pp. 1225–1232, 2014.CrossRefGoogle Scholar
  29. 29.
    “Jantzen Audio 1.0mH 18 AWG Air Core Inductor Crossover Coil.” [Online]. Available: http://www.parts-express.com/jantzen-audio-10mh-18-awg-air-core-inductor-crossover-coil%2D%2D255-250. [Accessed: 19-May-2016].
  30. 30.
    X. Yang, S. P. Carullo, K. Miu, and C. O. Nwankpa, “Reconfigurable Distribution Automation and Control Laboratory: Multiphase, Radial Power Flow Experiment,” IEEE Trans. Power Syst., vol. 20, no. 3, pp. 1207–1214, Aug. 2005.CrossRefGoogle Scholar
  31. 31.
    “PROGRAMMABLE AC&DC ELECTRONIC LOAD MODEL 63800 SERIES.” [Online]. Available: http://www.chromausa.com/pdf/63800-E.pdf. [Accessed: 02-May-2016].
  32. 32.
    “DS1103 PPC Controller Board Powerful controller board for rapid control prototyping.” [Online]. Available: https://www.dspace.com/shared/data/pdf/2014/DS1103.pdf. [Accessed: 03-May-2016].
  33. 33.
    “LEM Website - Search.” [Online]. Available: http://www.lem.com/hq/en/component/option,com_catalog/task,displaymodel/id,90.08.19.000.0/. [Accessed: 03-May-2016].
  34. 34.
    “LEM Website - Search.” [Online]. Available: http://www.lem.com/hq/en/component/option,com_catalog/task,displaymodel/id,90.27.19.000.0/. [Accessed: 03-May-2016].
  35. 35.
    “NI PCI-6024E (Legacy) - National Instruments.” [Online]. Available: http://sine.ni.com/nips/cds/view/p/lang/en/nid/10968. [Accessed: 04-May-2016].
  36. 36.
    “LabVIEW System Design Software - National Instruments.” [Online]. Available: http://www.ni.com/labview/. [Accessed: 04-May-2016].
  37. 37.
    “Software, Drivers, Manuals for Programmable DC Power Supplies | Magna-Power.” [Online]. Available: http://www.magna-power.com/support/download-center. [Accessed: 04-May-2016].
  38. 38.
    “Chroma ATE chr616xx Power Supply - IEEE 488.2 (GPIB) Driver for LabVIEW - National Instruments.” [Online]. Available: http://sine.ni.com/apps/utf8/niid_web_display.download_page?p_id_guid=E3B19B3E9172659CE034080020E74861. [Accessed: 04-May-2016].
  39. 39.
    “ControlDesk Next Generation - dSPACE.” [Online]. Available: https://www.dspace.com/en/inc/home/products/sw/experimentandvisualization/controldesk.cfm. [Accessed: 04-May-2016].
  40. 40.
    T. Dragiˇ and J. M. Guerrero, “DC Microgrids—Part II: A Review of Power Architectures, Applications, and,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528–3549, 2016.CrossRefGoogle Scholar
  41. 41.
    G. Pepermans, J. Driesen, D. Haeseldonckx, R. Belmans, and W. D’haeseleer, “Distributed generation: definition, benefits and issues,” Energy Policy, vol. 33, no. 6, pp. 787–798, Apr 2005.CrossRefGoogle Scholar
  42. 42.
    T. C. Green and M. Prodanović, “Control of inverter-based micro-grids,” Electr. Power Syst. Res., vol. 77, no. 9, pp. 1204–1213, Jul 2007.CrossRefGoogle Scholar
  43. 43.
    “IEEE Std 1547.4-2011,” IEEE Std 1547.4-2011. pp. 1–54, 2011.Google Scholar
  44. 44.
    J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodríguez, “Control of Power Converters in AC Microgrids,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4734–4749, Nov 2012.CrossRefGoogle Scholar
  45. 45.
    P. Piagi and R. H. Lasseter, “Autonomous control of microgrids,” 2006 IEEE Power Eng. Soc. Gen. Meet., no. June, p. 8 pp., 2006.Google Scholar
  46. 46.
    T. L. Vandoorn, B. Meersman, and L. Vandevelde, “Transition From Islanded to Grid-Connected Mode of Microgrids With Voltage-Based Droop Control,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 2545–2553, Aug. 013.CrossRefGoogle Scholar
  47. 47.
    “HIGH EFFICIENCY MULTICRYSTAL PHOTOVOLTAIC MODULE.” [Online]. Available: http://www.txspc.com/PDF/KC200GT.pdf.
  48. 48.
    D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Canizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, G. A. Jimenez-Estevez, and N. D. Hatziargyriou, “Trends in microgrid control,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1905–1919, 2014.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of North DakotaGrand ForksUSA
  2. 2.National Renewable Energy Laboratory (NREL)GoldenUSA
  3. 3.Electrical Engineering DepartmentUniversity of North DakotaGrand ForksUSA

Personalised recommendations