Advertisement

Completeness Theorems on the Boundary in Thermoelasticity

  • Alberto CialdeaEmail author
Chapter
Part of the Trends in Mathematics book series (TM)

Abstract

The steady oscillation equations of thermoelasticity theory are considered and the completeness (in the sense of Picone) on the boundary of a given bounded domain of the class of exponential polynomial solutions is proved. In the particular case of the equations of thermoelasto-static state we establish the completeness of the polynomial solutions.

Keywords

Completeness theorems Thermoelasticity Partial differential systems with constant coefficients 

Mathematics Subject Classification (2010)

Primary 42C30 Secondary 74B05 74F05 35Q74 

References

  1. 1.
    E. Almansi, Sull’integrazione dell’equazione differenziale Δ2m u = 0. Ann. Mat. (3) 2, 1–51 (1899)Google Scholar
  2. 2.
    L. Amerio, Sul calcolo delle soluzioni dei problemi al contorno per le equazioni lineari del secondo ordine di tipo ellittico. Am. J. Math. 69, 447–489 (1947)MathSciNetCrossRefGoogle Scholar
  3. 3.
    R.B. Ancora, Problemi analitici connessi alla teoria della piastra elastica appoggiata. Rend. Sem. Mat. Univ. Padova 20, 99–134 (1951)MathSciNetzbMATHGoogle Scholar
  4. 4.
    M. Brillouin, La mèthode des moindres carrès et les èquations aux dèrivèes de la Physique Mathèmatique. Ann. de Physique 6, 137–223 (1916)CrossRefGoogle Scholar
  5. 5.
    F.E. Browder, Approximation by solutions of partial differential equations. Am. J. Math. 84, 134–160 (1962)MathSciNetCrossRefGoogle Scholar
  6. 6.
    A. Cialdea, Un teorema di completezza per i polinomi biarmonici in un campo con contorno angoloso. Rend. Mat. Appl. (7) 5, 327–344 (1985)Google Scholar
  7. 7.
    A. Cialdea, Teoremi di completezza connessi con equazioni ellittiche di ordine superiore in due variabili in un campo con contorno angoloso. Rend. Circ. Mat. Palermo (2) 34, 32–49 (1985)MathSciNetCrossRefGoogle Scholar
  8. 8.
    A. Cialdea, L’equazione \(\Delta _2u+ a_{10}(x,y) \frac {\partial u}{\partial x} + a_{01}(x,y) \frac {\partial u}{\partial y} + a_{00}(x,y) u = F(x,y)\). Teoremi di completezza Atti Accad. Naz. Lincei, VIII. Ser., Rend. Cl. Sci. Fis. Mat. Nat. 81, 245–257 (1987)Google Scholar
  9. 9.
    A. Cialdea, Sul problema della derivata obliqua per le funzioni armoniche e questioni connesse. Rend. Accad. Naz. Sci. XL 12, 181–200 (1988)MathSciNetGoogle Scholar
  10. 10.
    A. Cialdea, Formule di maggiorazione e teoremi di completezza relativi al sistema dell’elasticità tridimensionale. Riv. Mat. Univ. Parma (4) 14, 283–302 (1988)Google Scholar
  11. 11.
    A. Cialdea, Completeness Theorems: Fichera’s fundamental results and some new contributions. Matematiche (Catania) LXII, 147–162 (2007)Google Scholar
  12. 12.
    A. Cialdea, Completeness theorems for elliptic equations of higher order with constant coefficients. Georgian Math. J. 14, 81–97 (2007)MathSciNetzbMATHGoogle Scholar
  13. 13.
    A. Cialdea, Completeness theorems in the uniform norm connected to elliptic equations of higher order with constant coefficients. Anal. Appl. (Sing.) 10, 1–20 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Cialdea, A. Malaspina, Completeness theorems for the Dirichlet problem for the polyharmonic equation. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 29, 153–174 (2005)MathSciNetGoogle Scholar
  15. 15.
    A. Cialdea, G. Nino, Completeness theorems for the Stokes system. PreprintGoogle Scholar
  16. 16.
    M.P. Colautti, Sul problema di Neumann per l’equazione Δ2 − λcu = f in un dominio piano a contorno angoloso. Mem. Accad. Sci. Torino (3) 4, 1–83 (1959)Google Scholar
  17. 17.
    M.P. Colautti, Teoremi di completezza in spazi hilbertiani connessi con l’equazione di Laplace in due variabili. Rend. Sem. Mat. Univ. Padova 31, 114–164 (1961)MathSciNetzbMATHGoogle Scholar
  18. 18.
    G. Fichera, Teoremi di completezza connessi all’integrazione dell’equazione Δ4 u = f. Giorn. Mat. Battaglini (4) 77, 184–199 (1947)Google Scholar
  19. 19.
    G. Fichera, Sui problemi analitici dell’elasticità piana. Rend. Sem. Fac. Sci. Univ. Cagliari 18, 1–22 (1948)MathSciNetzbMATHGoogle Scholar
  20. 20.
    G. Fichera, Teoremi di completezza sulla frontiera di un dominio per taluni sistemi di funzioni. Ann. Mat. Pura Appl. (4) 27, 1–28 (1948)MathSciNetCrossRefGoogle Scholar
  21. 21.
    G. Fichera, Sull’esistenza e sul calcolo delle soluzioni dei problemi al contorno, relativi all’equilibrio di un corpo elastico. Ann. Sc. Norm. Super. Pisa 248, 35–99 (1950)MathSciNetzbMATHGoogle Scholar
  22. 22.
    G. Fichera, Alcuni recenti sviluppi della teoria dei problemi al contorno per le equazioni alle derivate parziali lineari. Convegno Internazionale sulle Equazioni Lineari alle Derivate Parziali, Trieste, 1954 (Ed. Cremonese, Roma, 1955), pp. 174–227Google Scholar
  23. 23.
    G. Fichera, The problem of the completeness of systems of particular solutions of partial differential equations, in Numerical Mathematics. Symposium on Occasion of the Retirement L. Collatz, Hamburg 1979, vol. 49. International Series of Numerical Mathematics, ed. by R. Ansorge, K. Glashoff, B. Werner (1979), pp. 25–41Google Scholar
  24. 24.
    V. Kupradze, T.G. Gegelia, M.O. Basheleishvili, T.V. Burchuladze, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity (North-Holland Publishing Company, Amsterdam, 1979)Google Scholar
  25. 25.
    P. Lax, A stability theory of abstract differential equations and its applications to the study of local behaviours of solutions of elliptic equations. Commun. Pure Appl. Math. 8, 747–766 (1956)CrossRefGoogle Scholar
  26. 26.
    E. Magenes, Sull’equazione del calore: teoremi di unicità e teoremi di completezza connessi col metodo di integrazione di M. Picone., I, II. Rend. Sem. Mat. Univ. Padova 21, 99–123, 136–170 (1952)Google Scholar
  27. 27.
    B. Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution. Ann. Inst. Fourier Grenoble 6, 271–355 (1955–1956)MathSciNetCrossRefGoogle Scholar
  28. 28.
    V.G. Maz’ya, T.O. Shaposhnikova, Theory of Sobolev Multipliers. Grundlehren Math. Wiss., vol. 337 (Springer, Berlin, 2009)Google Scholar
  29. 29.
    R.F. Millar, On the completeness of sets of solutions to the Helmholtz equation. IMA J. Appl. Math. 30, 27–38 (1983)MathSciNetCrossRefGoogle Scholar
  30. 30.
    C. Miranda, Formule di maggiorazione e teorema di esistenza per le funzioni biarmoniche de due variabili. Giorn. Mat. Battaglini (4) 2(78), 97–118 (1948)Google Scholar
  31. 31.
    C. Miranda, Partial Differential Equations of Elliptic Type. Second revised edition. Ergeb. Math. Grenzgeb, vol. 2 (Springer, New York/Berlin, 1970)Google Scholar
  32. 32.
    M. Picone, Nuovo metodo di approssimazione per la soluzione del problema di Dirichlet. Rend. R. Acc. Lincei (5) 31, 357–359 (1922)Google Scholar
  33. 33.
    E.M. Stein, R. Shakarchi, Complex Analysis. Princeton Lectures in Analysis, II (Princeton University Press, Princeton, 2003)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Computer Science and EconomicsUniversity of BasilicataPotenzaItaly

Personalised recommendations