Advertisement

Boundary Value Problems in Polydomains

  • Ahmet Okay ÇelebiEmail author
Chapter
Part of the Trends in Mathematics book series (TM)

Abstract

In this paper we give a short survey of the boundary value problems in polydomains in the last decades. Firstly we develop an alternative method to derive integral representations for functions in \(\mathbb {C}^n\). This unified method provides representations which are suitable to be employed in discussions for all linear boundary value problems. In the rest of the article we have improved some results obtained for Schwarz and Dirichlet type problems.

Keywords

Polydisc Schwarz problem Riquier problem Complex partial differential equations 

Mathematics Subject Classification (2010)

Primary 32W10 32W50 Secondary 31A10 

Notes

Acknowledgements

The author is grateful to Professor Ümit Aksoy for her valuable comments and supports.

References

  1. 1.
    S.A. Abdymanapov, H. Begehr, A.B. Tungatarov, Some Schwarz problems in a quarter plane. Eurasian Math. J. 3, 22–35 (2005)Google Scholar
  2. 2.
    Ü. Aksoy, A.O. Çelebi, Norm estimates of a class of Calderon-Zygmund type strongly singular integral operators. Integral Transf. Spec. Funct. 18, 87–93 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ü. Aksoy, A.O. Çelebi, Schwarz problem for higher-order complex elliptic partial differential equations. Integral Transf. Spec. Funct. 19, 413–428 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ü. Aksoy, A.O. Çelebi, Dirichlet problems for generalized n-Poisson equation. in Pseudo-Differential Operators: Complex Analysis and Partial Differential Equations. Operator Theory: Advances and Applications, vol. 205, ed. by B.W. Schulze, M.W. Wong (Birkhäuser, Basel, 2009), pp. 129–141CrossRefGoogle Scholar
  5. 5.
    Ü. Aksoy, A.O. Çelebi, Neumann problem for generalized n-Poisson equation. J. Math. Anal. Appl. 357, 438–446 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ü. Aksoy, A.O. Çelebi, Schwarz problem for higher order linear equations in a polydisc. Complex Variables Elliptic Equ. 62, 1558–1569 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    H. Begehr, Complex Analytic Methods for Partial Differential Equations (World Scientific, Singapore, 1994)CrossRefGoogle Scholar
  8. 8.
    H. Begehr, Integral representations for differentiable functions, in Problemi Attuali dell’Analisi e della Fisica Matematica dedicato alla memoria di Gaetano Fichera, Taormina, 1998, ed. by P.E. Ricci (Aracne, Roma, 2000), pp. 111–130Google Scholar
  9. 9.
    H. Begehr, Representations in polydomains. Acta Math. Vietnam. 27, 271–282 (2002)MathSciNetzbMATHGoogle Scholar
  10. 10.
    H. Begehr, Boundary value problems in complex analysis I,II. Boletin de la Asosiación Matemática Venezolana XII, 65–85, 217–250 (2005)Google Scholar
  11. 11.
    H. Begehr, Biharmonic Green functions. Le Math. LXI, 395–405 (2006)Google Scholar
  12. 12.
    H. Begehr, A particular polyharmonic Dirichlet problem, in Complex Analysis Potential Theory, ed. by T. Aliyev Azeroglu, T.M. Tamrazov (World Scientific, Singapure, 2007), pp. 84–115CrossRefGoogle Scholar
  13. 13.
    H. Begehr, Six biharmonic Dirichlet problems in complex analysis, in Function Spaces in Complex and Clifford Analysis (National University Publications, Hanoi, 2008), pp. 243–252zbMATHGoogle Scholar
  14. 14.
    H. Begehr, A. Dzhuraev, An Introduction to Several Complex Variables and Partial Differential Equations. Pitman Monographs and and Surveys in Pure and Applied Mathematics (Chapman and Hall/CRC, Boca Raton, 1997)Google Scholar
  15. 15.
    H. Begehr, E. Gaertner, A Dirichlet problem for the inhomogeneous polyharmonic equation in the upper half plane. Georg. Math. J. 14, 33–52 (2007)MathSciNetzbMATHGoogle Scholar
  16. 16.
    H. Begehr, D. Schmersau, The Schwarz problem for polyanalytic functions. J. Anal. Appl. 24, 341–351 (2005)MathSciNetzbMATHGoogle Scholar
  17. 17.
    H. Begehr, T. Vaitekhovich, Iterated Dirichlet problem for the higher order Poisson equation. Le Matematiche LXIII, 139–154 (2008)Google Scholar
  18. 18.
    H. Begehr, T. Vaitekhovich, Green functions in complex plane domains. Uzbek Math. J. 4, 29–34 (2008)zbMATHGoogle Scholar
  19. 19.
    H. Begehr, D.Q. Dai, X. Li, Integral representation formulas in polydomains. Complex Var. 47, 463–484 (2002)MathSciNetzbMATHGoogle Scholar
  20. 20.
    H. Begehr, T.N.H. Vu, Z. Zhang, Polyharmonic Dirichlet problems. Proc. Steklov Inst. Math. 255, 13–34 (2006)MathSciNetCrossRefGoogle Scholar
  21. 21.
    H. Begehr, J. Du, Y. Wang, A Dirichlet problem for polyharmonic functions. Ann. Mat. Pure Appl. 187, 435–457 (2008)MathSciNetCrossRefGoogle Scholar
  22. 22.
    A.O. Çelebi, Dirichlet type problems in polydomains, in Modern Problems in Applied Analysis, ed. by P. Drygaś, S. Rogosin (Birkhäuser, Basel, 2017), pp. 65–76Google Scholar
  23. 23.
    A. Dzhuraev, On Riemann-Hilbert boundary problem in several complex variables. Complex Variables Elliptic Equ. 29, 287–303 (1996)MathSciNetzbMATHGoogle Scholar
  24. 24.
    A. Krausz, Integraldarstellungen mit Greenschen Funktionen höherer Ordnung in Gebieten und Polygebieten (Integral representations with Green functions of higher order in domains and polydomains). Ph.D. thesis , FU Berlin, 2005; http://www.diss.fuberlin.de/diss/receive/FUDISSthesis000000001659
  25. 25.
    A. Krausz, A general higher-order integral representation formula for polydomains. J. Appl. Funct. Anal. 2, 197–222 (2007)MathSciNetzbMATHGoogle Scholar
  26. 26.
    A. Kumar, A generalized Riemann boundary problem in two variables. Arch. Math. (Basel) 62, 531–538 (1994)MathSciNetCrossRefGoogle Scholar
  27. 27.
    S.S. Kutateladze, Fundamentals of Functional Analysis (Kluwer Academic Publishers, Dordrecht/Boston/London, 1996)CrossRefGoogle Scholar
  28. 28.
    A. Mohammed, The Riemann-Hilbert problem for certain poly domains and its connection to the Riemann problem. J. Math. Anal. Appl. 343, 706–723 (2008)MathSciNetCrossRefGoogle Scholar
  29. 29.
    A. Mohammed, Schwarz, Riemann, Riemann-Hilbert problems and their connections in polydomains, in Pseudo-Differential Operators: Complex Analysis and Partial Differential Equations. Operator Theory: Advances and Applications, vol. 205 (Birkhäuser Verlag, Basel, 2010), pp. 143–166CrossRefGoogle Scholar
  30. 30.
    T. Vaitsiakhovich, Boundary value problems for complex partial differential equations in a ring domain. Ph.D. thesis, F.U. Berlin, 2008Google Scholar
  31. 31.
    I.N. Vekua, Generalized Analytic Functions (Pergamon Press, Oxford, 1962)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Yeditepe UniversityIstanbulTurkey

Personalised recommendations