Advertisement

Boundary Eigenvalues of Pluriharmonic Functions for the Third Boundary Condition on the Unit Polydiscs

  • Alip MohammedEmail author
Chapter
Part of the Trends in Mathematics book series (TM)

Abstract

The paper provides explicit eigenvalues and eigenfunctions of pluriharmonic functions for the third boundary condition on the unit polydiscs. It is shown that in the case of eigenvalue, for each eigenvalue, there are multiple eigenfunctions. Compatibility and solvability conditions are also studied for the case of inhomogeneous third boundary condition.

Keywords

The third boundary condition Eigenvalues with multiple eigenfunctions Pluriharmonic functions Solvability conditions The unit polydiscs 

Mathematics Subject Classification (2010)

Primary 32A50 31C10 Secondary 35J57 65N25 34B09 

References

  1. 1.
    M. Akel, H. Begehr, Neumann function for a hyperbolic strip and a class of related plane domains. Math. Nachr. 290(4), 490–506 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    M. Akel, S.R. Mondal, Dirichlet problems in lens and lune. Bull. Malays. Math. Sci. Soc. 41(2), 1029–1043 (2017)MathSciNetzbMATHGoogle Scholar
  3. 3.
    G. Auchmuty, Steklov representations of Green’s functions for Laplacian boundary value problems. Appl. Math. Optim. https://doi.org/10.1007/s00245-016-9370-4. Article electronically published on July 25, 2016MathSciNetCrossRefGoogle Scholar
  4. 4.
    H. Begehr, A. Dzhuraev, An Introduction to Several Complex Variables and Partial Differential Equations. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 88 (Addison Wesley Longman, Harlow, 1997)Google Scholar
  5. 5.
    H. Begehr, A. Mohammed, Schwarz problem for the Torus related domains. Appl. Anal. 85(9), 1079–1101 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    H. Begehr, S. Burgumbayeva, B. Shupeyeva, Remark on Robin problem for Poisson equation. Complex Variables Elliptic Equ. https://doi.org/10.1080/17476933.2017.1303052. Published online: 19 Mar 2017MathSciNetCrossRefGoogle Scholar
  7. 7.
    C. Bandle, A. Wagner, Domain perturbations for elliptic problems with Robin boundary conditions of opposite sign. St. Petersburg Math. J. 28(2), 153–170 (2017). http://dx.doi.org/10.1090/spmj/1443. Article electronically published on February 15, 2017.MathSciNetCrossRefGoogle Scholar
  8. 8.
    S.G. Krantz, Complex Analysis: The Geometric Viewpoint (Carus Mathematical Monographs) (2004). ISBN-13:978-0883850268Google Scholar
  9. 9.
    A. Mohammed, The Neumann problem for the inhomogeneous pluriharmonic system in polydiscs, in Complex Methods for Partial Differential and Integral Equations, ed. by H. Begehr, A. Celebi, W. Tutschke (Kluwer Academic Publishers, Dordrecht, 1999), pp. 155–164CrossRefGoogle Scholar
  10. 10.
    A. Mohammed, The classical and the modified Neumann problem for the inhomogeneous pluriholomorphic system in polydiscs. J. Anal. Appl. 19, 539–552 (2000)MathSciNetzbMATHGoogle Scholar
  11. 11.
    A. Mohammed, The classical and the modified Dirichlet problem for the inhomogeneous pluriholomorphic system in polydiscs . Complex Variables Theory Appl. 45, 213–246 (2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    A. Mohammed, Boundary value problems of complex variables. PhD Thesis, Freie Universität Berlin, 2003. http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000000885
  13. 13.
    A. Mohammed, The torus related Riemann problem. J. Math. Anal. Appl. 326(1), 533–555 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Mohammed, The Riemann–Hilbert problem for certain poly domains and its connection to the Riemann problem. J. Math. Anal. Appl. 343(2), 706–723 (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    A. Mohammed, Schwarz, Riemann, Riemann-Hilbert problems and their connections in polydomains, in Pseudo-Differential Operators: Complex Analysis and Partial Differential Equations (Birkhäuser, Basel, 2009), pp.143–166CrossRefGoogle Scholar
  16. 16.
    A. Mohammed, A.M. Tuffaha, On boundary control of the Poisson equation with the third boundary condition. J. Math. Anal. Appl. 459(1), https://doi.org/10.1016/j.jmaa.2017.10.059. Published online October 2017MathSciNetCrossRefGoogle Scholar
  17. 17.
    A. Mohammed, M.W. Wong, Solutions of the Riemann–Hilbert–Poincaré problem and the Robin problem for the inhomogeneous Cauch - Riemann equation. Proc. R. Soc. Edinb. Sect. A Math. 139(1), 157–181 (2009)CrossRefGoogle Scholar
  18. 18.
    A. Mohammed, M.W. Wong, Solutions of Robin problems for overdetermined inhomogeneous Cauchy–Riemann systems on the unit polydisc. Complex Anal. Oper. Theory 4(1), 39–53 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    A. Mohammed, M.W. Wong, Eigenvalues of the third boundary condition with variable coefficient for Poisson equation (to be published)Google Scholar
  20. 20.
    A. Mohammed, D. Siginer, F. Akyildiz, Eigenvalues of holomorphic functions for the third boundary condition. J. Quart. Appl. Math. 73(3), 553–574 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsKhalifa UniversityAbu DhabiUAE

Personalised recommendations