Analysis as a Life pp 237-260 | Cite as
Newtonian and Single Layer Potentials for the Stokes System with L∞ Coefficients and the Exterior Dirichlet Problem
Abstract
A mixed variational formulation of some problems in L2-based Sobolev spaces is used to define the Newtonian and layer potentials for the Stokes system with L∞ coefficients on Lipschitz domains in \({\mathbb R}^3\). Then the solution of the exterior Dirichlet problem for the Stokes system with L∞ coefficients is presented in terms of these potentials and the inverse of the corresponding single layer operator.
Keywords
Stokes system with L∞ coefficients Newtonian and layer potentials Variational approach Inf-sup condition Sobolev spacesMathematics Subject Classification (2010)
Primary 35J25 35Q35 42B20 46E35 Secondary 76D 76MNotes
Acknowledgements
The research has been supported by the grant EP/M013545/1: “Mathematical Analysis of Boundary-Domain Integral Equations for Nonlinear PDEs” from the EPSRC, UK. Part of this work was done in April/May 2018, when M. Kohr visited the Department of Mathematics of the University of Toronto. She is grateful to the members of this department for their hospitality.
References
- 1.M.S. Agranovich, Sobolev Spaces, Their Generalizations, and Elliptic Problems in Smooth and Lipschitz Domains (Springer, Heidelberg, 2015)CrossRefGoogle Scholar
- 2.F. Alliot, C. Amrouche, The Stokes problem in \({\mathbb R}^n\): an approach in weighted Sobolev spaces. Math. Models Methods Appl. Sci. 9, 723–754 (1999)MathSciNetCrossRefGoogle Scholar
- 3.F. Alliot, C. Amrouche, Weak solutions for the exterior Stokes problem in weighted Sobolev spaces. Math. Methods Appl. Sci. 23, 575–600 (2000)MathSciNetCrossRefGoogle Scholar
- 4.C. Amrouche, M. Meslameni, Stokes problem with several types of boundary conditions in an exterior domain. Electron. J. Diff. Equ. 2013(196), 1–28 (2013)MathSciNetzbMATHGoogle Scholar
- 5.C. Amrouche, H.H. Nguyen, L p-weighted theory for Navier-Stokes equations in exterior domains. Commun. Math. Anal. 8, 41–69 (2010)MathSciNetzbMATHGoogle Scholar
- 6.I. Babus̆ka, The finite element method with Lagrangian multipliers. Numer. Math. 20, 179–192 (1973)MathSciNetCrossRefGoogle Scholar
- 7.C. Băcuţă, M.E. Hassell, G.C. Hsiao, F-J. Sayas, Boundary integral solvers for an evolutionary exterior Stokes problem. SIAM J. Numer. Anal. 53, 1370–1392 (2015)MathSciNetCrossRefGoogle Scholar
- 8.A. Barton, Layer potentials for general linear elliptic systems. Electron. J. Diff. Equ. 2017(309), 1–23 (2017)MathSciNetzbMATHGoogle Scholar
- 9.K. Brewster, D. Mitrea, I. Mitrea, M. Mitrea, Extending Sobolev functions with partially vanishing traces from locally (𝜖, δ)-domains and applications to mixed boundary problems. J. Funct. Anal. 266, 4314–4421 (2014)MathSciNetCrossRefGoogle Scholar
- 10.F. Brezzi, On the existence, uniqueness and approximation of saddle points problems arising from Lagrange multipliers. R.A.I.R.O. Anal. Numer. R2, 129–151 (1974)MathSciNetCrossRefGoogle Scholar
- 11.F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 15 (Springer, New York, 1991)Google Scholar
- 12.O. Chkadua, S.E. Mikhailov, D. Natroshvili, Analysis of direct boundary-domain integral equations for a mixed BVP with variable coefficient, I: Equivalence and invertibility. J. Integr. Equ. Appl. 21, 499–543 (2009)MathSciNetzbMATHGoogle Scholar
- 13.O. Chkadua, S.E. Mikhailov, D. Natroshvili, Localized boundary-domain singular integral equations based on harmonic parametrix for divergence-form elliptic PDEs with variable matrix coefficients. Integr. Equ. Oper. Theory. 76, 509–547 (2013)MathSciNetCrossRefGoogle Scholar
- 14.O. Chkadua, S.E. Mikhailov, D. Natroshvili, Analysis of direct segregated boundary-domain integral equations for variable-coefficient mixed BVPs in exterior domains. Anal. Appl. 11(4), 1350006 (2013)MathSciNetCrossRefGoogle Scholar
- 15.J. Choi, K-A. Lee, The Green function for the Stokes system with measurable coefficients. Commun. Pure Appl. Anal. 16, 1989–2022 (2017)MathSciNetCrossRefGoogle Scholar
- 16.J. Choi, M. Yang, Fundamental solutions for stationary Stokes systems with measurable coefficients. J. Diff. Equ. 263, 3854–3893 (2017)MathSciNetCrossRefGoogle Scholar
- 17.M. Costabel, Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19, 613–626 (1988)MathSciNetCrossRefGoogle Scholar
- 18.R. Dautray, J. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Integral Equations and Numerical Methods, vol. 4 (Springer, Berlin, 1990)Google Scholar
- 19.M. Dindos̆, M. Mitrea, The stationary Navier-Stokes system in nonsmooth manifolds: the Poisson problem in Lipschitz and C 1 domains. Arch. Ration. Mech. Anal. 174, 1–47 (2004)Google Scholar
- 20.A. Ern, J.L. Guermond, Theory and Practice of Finite Elements (Springer, New York, 2004)CrossRefGoogle Scholar
- 21.E. Fabes, C. Kenig, G. Verchota, The Dirichlet problem for the Stokes system on Lipschitz domains. Duke Math. J. 57, 769–793 (1988)MathSciNetCrossRefGoogle Scholar
- 22.E. Fabes, O. Mendez, M. Mitrea, Boundary layers on Sobolev-Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains. J. Funct. Anal. 159, 323–368 (1998)MathSciNetCrossRefGoogle Scholar
- 23.G.P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady-State Problems, 2nd edn. (Springer, New York, 2011)Google Scholar
- 24.G.N. Gatica, W.L. Wendland, Coupling of mixed finite elements and boundary elements for linear and nonlinear elliptic problems. Appl. Anal. 63, 39–75 (1996)MathSciNetCrossRefGoogle Scholar
- 25.V. Girault, P.A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer Series in Comp. Math., vol. 5 (Springer, Berlin, 1986)CrossRefGoogle Scholar
- 26.V. Girault, A. Sequeira, A well-posed problem for the exterior Stokes equations in two and three dimensions. Arch. Ration. Mech. Anal. 114, 313–333 (1991)MathSciNetCrossRefGoogle Scholar
- 27.J. Giroire, Étude de quelques problèmes aux limites extérieurs et résolution par équations intégrales. Thése de Doctorat d’État, Université Pierre-et-Marie-Curie (Paris-VI), 1987Google Scholar
- 28.B. Hanouzet, Espaces de Sobolev avec poids – application au probl\(\grave {e}\)me de Dirichlet dans un demi-espace. Rend. Sere. Mat. Univ. Padova. 46, 227–272 (1971)Google Scholar
- 29.S. Hofmann, M. Mitrea, A.J. Morris, The method of layer potentials in L p and endpoint spaces for elliptic operators with L ∞ coefficients. Proc. Lond. Math. Soc. 111, 681–716 (2015)MathSciNetCrossRefGoogle Scholar
- 30.G.C. Hsiao, W.L. Wendland, Boundary Integral Equations (Springer, Heidelberg, 2008)CrossRefGoogle Scholar
- 31.D.S. Jerison, C. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130, 161–219 (1995)MathSciNetCrossRefGoogle Scholar
- 32.M. Kohr, I. Pop, Viscous Incompressible Flow for Low Reynolds Numbers (WIT Press, Southampton, 2004)zbMATHGoogle Scholar
- 33.M. Kohr, M. Lanza de Cristoforis, W.L. Wendland, Nonlinear Neumann-transmission problems for Stokes and Brinkman equations on Euclidean Lipschitz domains. Potential Anal. 38, 1123–1171 (2013)MathSciNetCrossRefGoogle Scholar
- 34.M. Kohr, M. Lanza de Cristoforis, S.E. Mikhailov, W.L. Wendland, Integral potential method for transmission problem with Lipschitz interface in \({\mathbb R}^3\) for the Stokes and Darcy-Forchheimer-Brinkman PDE systems. Z. Angew. Math. Phys. 67(5), 1–30, 116 (2016)Google Scholar
- 35.M. Kohr, M. Lanza de Cristoforis, W.L. Wendland, On the Robin-transmission boundary value problems for the nonlinear Darcy-Forchheimer-Brinkman and Navier-Stokes systems. J. Math. Fluid Mech. 18, 293–329 (2016)MathSciNetCrossRefGoogle Scholar
- 36.M. Kohr, S.E. Mikhailov, W.L. Wendland, Transmission problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman systems in Lipschitz domains on compact Riemannian manifolds. J. Math. Fluid Mech. 19, 203–238 (2017)MathSciNetCrossRefGoogle Scholar
- 37.J. Lang, O. Méndez, Potential techniques and regularity of boundary value problems in exterior non-smooth domains: regularity in exterior domains. Potential Anal. 24, 385–406 (2006)MathSciNetCrossRefGoogle Scholar
- 38.W. McLean, Strongly Elliptic Systems and Boundary Integral Equations (Cambridge University Press, Cambridge, 2000)zbMATHGoogle Scholar
- 39.D. Medková, Transmission problem for the Brinkman system. Complex Var. Elliptic Equ. 59, 1664–1678 (2014)MathSciNetCrossRefGoogle Scholar
- 40.S.E. Mikhailov, Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains. J. Math. Anal. Appl. 378, 324–342 (2011)MathSciNetCrossRefGoogle Scholar
- 41.S.E. Mikhailov, Solution regularity and co-normal derivatives for elliptic systems with non-smooth coefficients on Lipschitz domains. J. Math. Anal. Appl. 400, 48–67 (2013)MathSciNetCrossRefGoogle Scholar
- 42.M. Mitrea, M. Wright, Boundary value problems for the Stokes system in arbitrary Lipschitz domains. Astérisque. 344, viii+241 pp. (2012)Google Scholar
- 43.M. Mitrea, S. Monniaux, M. Wright, The Stokes operator with Neumann boundary conditions in Lipschitz domains. J. Math. Sci. (New York). 176(3), 409–457 (2011)MathSciNetCrossRefGoogle Scholar
- 44.J.-C. Nédélec, Approximation des Équations Intégrales en Mécanique et en Physique. Cours de DEA, 1977Google Scholar
- 45.D.A. Nield, A. Bejan, Convection in Porous Media, 3rd edn. (Springer, New York, 2013)CrossRefGoogle Scholar
- 46.F-J. Sayas, V. Selgas, Variational views of Stokeslets and stresslets. SEMA J 63, 65–90 (2014)MathSciNetCrossRefGoogle Scholar
- 47.H. Triebel, Interpolation Theory, Function Spaces, Differential Operators (North-Holland, Amsterdam, 1978)zbMATHGoogle Scholar
- 48.W. Varnhorn, The Stokes Equations (Akademie Verlag, Berlin, 1994)zbMATHGoogle Scholar