Advertisement

Multi-client Predicate-Only Encryption for Conjunctive Equality Tests

  • Tim van de KampEmail author
  • Andreas Peter
  • Maarten H. Everts
  • Willem Jonker
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11261)

Abstract

We propose the first multi-client predicate-only encryption scheme capable of efficiently testing the equality of two encrypted vectors. Our construction can be used for the privacy-preserving monitoring of relations among multiple clients. Since both the clients’ data and the predicates are encrypted, our system is suitable for situations in which this information is considered sensitive. We prove our construction plaintext and predicate private in the generic bilinear group model using random oracles, and secure under chosen-plaintext attack with unbounded corruptions under the symmetric external Diffie–Hellman assumption. Additionally, we provide a proof-of-concept implementation that is capable of evaluating one thousand predicates defined over the inputs of ten clients in less than a minute on commodity hardware.

Keywords

Multi-client functional encryption Predicate-only encryption Privacy-preserving multi-client monitoring 

Notes

Acknowledgment

This work was supported by the Netherlands Organisation for Scientific Research (nwo) in the context of the criptim project. The authors additionally thank the reviewers and shepherd for their suggested improvements.

Supplementary material

References

  1. 1.
    Abdalla, M., Catalano, D., Dent, A.W., Malone-Lee, J., Neven, G., Smart, N.P.: Identity-based encryption gone wild. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 300–311. Springer, Heidelberg (2006).  https://doi.org/10.1007/11787006_26CrossRefGoogle Scholar
  2. 2.
    Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional encryption from pairings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 601–626. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56620-7_21CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44647-8_13CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Semantically secure order-revealing encryption: multi-input functional encryption without obfuscation. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 563–594. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_19CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19571-6_16CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-70936-7_29CrossRefGoogle Scholar
  7. 7.
    Bösch, C., Hartel, P., Jonker, W., Peter, A.: A survey of provably secure searchable encryption. CSUR 47(2), 18:1–18:51 (2014)CrossRefGoogle Scholar
  8. 8.
    Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 306–324. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_12CrossRefGoogle Scholar
  9. 9.
    Chase, M., Meiklejohn, S., Zaverucha, G.: Algebraic MACs and keyed-verification anonymous credentials. In: CCS, pp. 1205–1216. ACM (2014)Google Scholar
  10. 10.
    Chenette, N., Lewi, K., Weis, S.A., Wu, D.J.: Practical order-revealing encryption with limited leakage. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 474–493. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-52993-5_24CrossRefzbMATHGoogle Scholar
  11. 11.
    Conrad, S.H., LeClaire, R.J., O’Reilly, G.P., Uzunalioglu, H.: Critical national infrastructure reliability modeling and analysis. Bell Labs Tech. J. 11(3), 57–71 (2006)CrossRefGoogle Scholar
  12. 12.
    Dunn-Cavelty, M., Suter, M.: Public-private partnerships are no silver bullet: an expanded governance model for critical infrastructure protection. Int. J. Crit. Infrast. Prot. 2(4), 179–187 (2009)CrossRefGoogle Scholar
  13. 13.
    Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Appl. Math. 156(16), 3113–3121 (2008). Applications of Algebra to CryptographyMathSciNetCrossRefGoogle Scholar
  14. 14.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS, pp. 40–49 (2013)Google Scholar
  15. 15.
    Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_32CrossRefGoogle Scholar
  16. 16.
    Gordon, S.D., Katz, J., Liu, F.H., Shi, E., Zhou, H.S.: Multi-input functional encryption. Cryptology ePrint Archive, Report 2013/774 (2013)Google Scholar
  17. 17.
    Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78967-3_9CrossRefGoogle Scholar
  18. 18.
    Lewi, K., Wu, D.J.: Order-revealing encryption: new constructions, applications, and lower bounds. In: CCS. ACM (2016)Google Scholar
  19. 19.
    Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_31CrossRefGoogle Scholar
  20. 20.
    Luiijf, E., Klaver, M.: On the sharing of cyber security information. In: Rice, M., Shenoi, S. (eds.) ICCIP 2015. IAICT, vol. 466, pp. 29–46. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26567-4_3CrossRefGoogle Scholar
  21. 21.
    Luiijf, E., Nieuwenhuijs, A., Klaver, M., van Eeten, M., Cruz, E.: Empirical findings on critical infrastructure dependencies in Europe. In: Setola, R., Geretshuber, S. (eds.) CRITIS 2008. LNCS, vol. 5508, pp. 302–310. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03552-4_28CrossRefGoogle Scholar
  22. 22.
    Miyaji, A., Nakabayashi, M., Takano, S.: Characterization of elliptic curve traces under FR-reduction. In: Won, D. (ed.) ICISC 2000. LNCS, vol. 2015, pp. 90–108. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45247-8_8CrossRefGoogle Scholar
  23. 23.
    Moteff, J.D., Stevens, G.M.: Critical infrastructure information disclosure and homeland security (2002). http://www.dtic.mil/docs/citations/ADA467310
  24. 24.
    Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. ACM 51(2), 231–262 (2004)MathSciNetzbMATHGoogle Scholar
  25. 25.
    O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556 (2010)Google Scholar
  26. 26.
    Pandey, O., Rouselakis, Y.: Property preserving symmetric encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 375–391. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_23CrossRefGoogle Scholar
  27. 27.
    President’s Commission on Critical Infrastructure Protection: Critical foundations: Protecting America’s infrastructures (1997). https://www.fas.org/sgp/library/pccip.pdf
  28. 28.
    Sahai, A., Waters, B.: Fuzzy Identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_27CrossRefGoogle Scholar
  29. 29.
    Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. ACM 27(4), 701–717 (1980)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00457-5_27CrossRefGoogle Scholar
  31. 31.
    Shi, E., Chan, T.H., Rieffel, E.G., Chow, R., Song, D.: Privacypreserving aggregation of time-series data. In: NDSS. The Internet Society (2011). https://www.ndss-symposium.org/ndss2011/privacy-preserving-aggregation-of-time-series-data/
  32. 32.
    Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-69053-0_18CrossRefGoogle Scholar
  33. 33.
    Skopik, F., Settanni, G., Fiedler, R.: A problem shared is a problem halved: a survey on the dimensions of collective cyber defense through security information sharing. Comput. Secur. 60, 154–176 (2016)CrossRefGoogle Scholar
  34. 34.
    Smart, N.P.: The exact security of ECIES in the generic group model. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 73–84. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45325-3_8CrossRefGoogle Scholar
  35. 35.
    Yang, G., Tan, C.H., Huang, Q., Wong, D.S.: Probabilistic public key encryption with equality test. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 119–131. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11925-5_9CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of TwenteEnschedeThe Netherlands
  2. 2.TNOGroningenThe Netherlands

Personalised recommendations