Indulpet Miner: Combining Discovery Algorithms

  • Sander J. J. LeemansEmail author
  • Niek Tax
  • Arthur H. M. ter Hofstede
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11229)


In this work, we explore an approach to process discovery that is based on combining several existing process discovery algorithms. We focus on algorithms that generate process models in the process tree notation, which are sound by design. The main components of our proposed process discovery approach are the Inductive Miner, the Evolutionary Tree Miner, the Local Process Model Miner and a new bottom-up recursive technique. We conjecture that the combination of these process discovery algorithms can mitigate some of the weaknesses of the individual algorithms. In cases where the Inductive Miner results in overgeneralizing process models, the Evolutionary Tree Miner can often mine much more precise models. At the other hand, while the Evolutionary Tree Miner is computationally expensive, running it only on parts of the log that the Inductive Miner is not able to represent with a precise model fragment can considerably limit the search space size of the Evolutionary Tree Miner. Local Process Models and bottom-up recursion aid the Evolutionary Tree Miner further by instantiating it with frequent process model fragments. We evaluate our approaches on a collection of real-life event logs and find that it does combine the advantages of the miners and in some cases surpasses other discovery techniques.


Process mining Process discovery Boosting Process trees Bottom-up recursion 



We thank Joos Buijs for his help in integrating the Evolutionary Tree Miner (ETM) with the Indulpet Miner, and Eric Verbeek for coming up with its name.


  1. 1.
    van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Heidelberg (2016). Scholar
  2. 2.
    van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on process models for conformance checking and performance analysis. Wiley Interdiscip. Rew: Data Min. Knowl. Discov. 2(2), 182–192 (2012). Scholar
  3. 3.
    Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Polyvyanyy, A.: Split miner: automated discovery of accurate and simple business process models from event logs. Knowl. Inf. Syst., 1–34 (2018).
  4. 4.
    Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)MathSciNetzbMATHGoogle Scholar
  5. 5.
    vanden Broucke, S.K.L.M., De Weerdt, J.: Fodina: a robust and flexible heuristic process discovery technique. Decis. Support Syst. 100, 109–118 (2017)CrossRefGoogle Scholar
  6. 6.
    Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: A genetic algorithm for discovering process trees. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2012)Google Scholar
  7. 7.
    Dahari, Y., Gal, A., Senderovich, A., Weidlich, M.: Fusion-based process discovery. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 291–307. Springer, Cham (2018). Scholar
  8. 8.
    van Dongen, B.: BPI challenge 2012 dataset (2012).
  9. 9.
    van Dongen, B.: BPI challenge 2015 dataset (2015).
  10. 10.
    van Dongen, B., Borchert, F.: BPI challenge 2018 dataset (2018).
  11. 11.
    van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M., van der Aalst, W.M.P.: The ProM framework: a new era in process mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg (2005). Scholar
  12. 12.
    Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust process discovery with artificial negative events. J. Mach. Learn. Res. 10(Jun), 1305–1340 (2009)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplification based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007). Scholar
  14. 14.
    Hoeting, J.A., Madigan, D., Raftery, A.E., Volinsky, C.T.: Bayesian model averaging: a tutorial. Stat. Sci. 14(4), 382–401 (1999)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Leemans, S.J.J.: Robust process mining with guarantees. Ph.D. thesis, Eindhoven University of Technology (2017)Google Scholar
  16. 16.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013). Scholar
  17. 17.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham (2014). Scholar
  18. 18.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from incomplete event logs. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 91–110. Springer, Cham (2014). Scholar
  19. 19.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Using life cycle information in process discovery. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP, vol. 256, pp. 204–217. Springer, Cham (2016). Scholar
  20. 20.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery and conformance checking. Softw. Syst. Model. 17(2), 599–631 (2018). Scholar
  21. 21.
    de Leoni, M., Mannhardt, F.: Road traffic fine management process (2015). Scholar
  22. 22.
    Mannhardt, F.: Sepsis cases - event log (2018).
  23. 23.
    Mannhardt, F., Tax, N.: Unsupervised event abstraction using pattern abstraction and local process models. In: Working Conference on Enabling Business Transformation by Business Process Modeling, Development, and Support, pp. 55–63. (2017)Google Scholar
  24. 24.
    Munoz-Gama, J.: Conformance Checking and Diagnosis in Process Mining - Comparing Observed and Modeled Processes. LNBIP, vol. 270. Springer, Cham (2016). Scholar
  25. 25.
    Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  26. 26.
    Object Management Group: Notation (BPMN) version 2.0. OMG Specification (2011)Google Scholar
  27. 27.
    Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5(2), 197–227 (1990)Google Scholar
  28. 28.
    Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.P.: Mining local process models. J. Innov. Digit. Ecosyst. 3(2), 183–196 (2016)CrossRefGoogle Scholar
  29. 29.
    Tredup, R., Rosenke, C., Wolf, K.: Elementary net synthesis remains np-complete even for extremely simple inputs. In: Khomenko, V., Roux, O.H. (eds.) PETRI NETS 2018. LNCS, vol. 10877, pp. 40–59. Springer, Cham (2018). Scholar
  30. 30.
    Wolpert, D.H.: Stacked generalization. Neural Netw. 5(2), 241–259 (1992)CrossRefGoogle Scholar
  31. 31.
    van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P.: Avoiding over-fitting in ILP-based process discovery. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 163–171. Springer, Cham (2015). Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Sander J. J. Leemans
    • 1
    Email author
  • Niek Tax
    • 2
  • Arthur H. M. ter Hofstede
    • 1
  1. 1.Queensland University of TechnologyBrisbaneAustralia
  2. 2.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations