Advertisement

Lifecycle-Based Process Performance Analysis

  • Bart F. A. HompesEmail author
  • Wil M. P. van der Aalst
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11229)

Abstract

Many business processes are supported by information systems that record their execution. Process mining techniques extract knowledge and insights from such process execution data typically stored in event logs or streams. Most process mining techniques focus on process discovery (the automated extraction of process models) and conformance checking (aligning observed and modeled behavior). Existing process performance analysis techniques typically rely on ad-hoc definitions of performance. This paper introduces a novel comprehensive approach to process performance analysis from event data. Our generic technique centers around business artifacts, key conceptual entities that behave according to state-based transactional lifecycle models. We present a formalization of these concepts as well as a structural approach to calculate and monitor process performance from event data. The approach has been implemented in the open source process mining tool ProM and its applicability has been evaluated using public real-life event data.

Keywords

Process mining Performance analysis Business artifacts Transactional lifecycle models 

References

  1. 1.
    IEEE Standard for extensible event stream (XES) for achieving interoperability in event logs and event streams. IEEE Std 1849–2016, pp. 1–50, November 2016Google Scholar
  2. 2.
    Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance Checking - Relating Processes and Models. Springer, Heidelberg (2018).  https://doi.org/10.1007/978-3-319-99414-7CrossRefGoogle Scholar
  3. 3.
    Cohn, D., Hull, R.: Business artifacts: a data-centric approach to modeling business operations and processes. IEEE Data Eng. Bull. 32(3), 3–9 (2009)Google Scholar
  4. 4.
    del-Río-Ortega, A., Cabanillas, C., Resinas, M., Ruiz-Cortés, A.: PPINOT tool suite: a performance management solution for process-oriented organisations. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 675–678. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-45005-1_58CrossRefGoogle Scholar
  5. 5.
    del-Río-Ortega, A., Resinas, M., Cabanillas, C., Ruiz Cortés, A.: Defining and analysing resource-aware process performance indicators. In: Proceedings of the CAiSE 2013 Forum at the 25th International Conference on Advanced Information Systems Engineering (CAiSE), Valencia, Spain, 20th June 2013, pp. 57–64 (2013)Google Scholar
  6. 6.
    del-Río-Ortega, A., Resinas, M., Cabanillas, C., Ruiz Cortés, A.: On the definition and design-time analysis of process performance indicators. Inf. Syst. 38(4), 470–490 (2013)CrossRefGoogle Scholar
  7. 7.
    del-Río-Ortega, A., Resinas, M., Durán, A., Bernárdez, B., Ruiz-Cortés, A., Toro, M.: Visual PPINOT: a graphical notation for process performance indicators. Bus. Inf. Syst. Eng. 1–25 (2017).  https://doi.org/10.1007/s12599-017-0483-3
  8. 8.
    del-Río-Ortega, A., Resinas, M., Durán, A., Ruiz Cortés, A.: Using templates and linguistic patterns to define process performance indicators. Enterp. IS 10(2), 159–192 (2016)CrossRefGoogle Scholar
  9. 9.
    Ebert, J., Engels, G.: Specialization of object life cycle definitions. Technical report (1997)Google Scholar
  10. 10.
    Ferreira, D.R., Gillblad, D.: Discovering process models from unlabelled event logs. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 143–158. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03848-8_11CrossRefGoogle Scholar
  11. 11.
    González, L., Rubio, F., González, F., Velthuis, M.: Measurement in business processes: a systematic review. Bus. Process Manag. J. 16(1), 114–134 (2010)CrossRefGoogle Scholar
  12. 12.
    Hompes, B., Buijs, J., van der Aalst, W.: A generic framework for context-aware process performance analysis. In: On the Move to Meaningful Internet Systems: OTM 2016 Conferences - Confederated International Conferences: CoopIS, C&TC, and ODBASE 2016, Rhodes, Greece, 24–28 October 2016, Proceedings,pp. 300–317 (2016)CrossRefGoogle Scholar
  13. 13.
    Hompes, B., Maaradji, A., La Rosa, M., Dumas, M., Buijs, J., van der Aalst, W.: Discovering causal factors explaining business process performance variation. In: Advanced Information Systems Engineering - 29th International Conference, CAiSE 2017, Essen, Germany, 12–16 June 2017, Proceedings, p. 177–192 (2017)Google Scholar
  14. 14.
    Hull, R., et al.: Business artifacts with guard-stage-milestone lifecycles: managing artifact interactions with conditions and events. In: Proceedings of the Fifth ACM International Conference on Distributed Event-Based Systems, DEBS 2011, New York, NY, USA, 11–15 July 2011, pp. 51–62 (2011)Google Scholar
  15. 15.
    Hull, R., et al.: Introducing the guard-stage-milestone approach for specifying business entity lifecycles. In: Bravetti, M., Bultan, T. (eds.) WS-FM 2010. LNCS, vol. 6551, pp. 1–24. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19589-1_1CrossRefGoogle Scholar
  16. 16.
    Lu, X., Nagelkerke, M., van de Wiel, D., Fahland, D.: Discovering interacting artifacts from ERP systems. IEEE Trans. Serv. Comput. 8(6), 861–873 (2015)CrossRefGoogle Scholar
  17. 17.
    Munoz-Gama, J.: Conformance Checking and Diagnosis in Process Mining: Comparing Observed and Modeled Processes. Lecture Notes in Business Information Processing, vol. 270. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-319-49451-7CrossRefzbMATHGoogle Scholar
  18. 18.
    Nigam, A., Caswell, N.: Business artifacts: an approach to operational specification. IBM Syst. J. 42(3), 428–445 (2003)CrossRefGoogle Scholar
  19. 19.
    Popova, V., Fahland, D., Dumas, M.: Artifact lifecycle discovery. Int. J. Coop. Inf. Syst. 24(1), 1550001 (2015)CrossRefGoogle Scholar
  20. 20.
    Popova, V., Treur, J.: A specification language for organisational performance indicators. Appl. Intell. 27(3), 291–301 (2007)CrossRefGoogle Scholar
  21. 21.
    van der Aa, H., Leopold, H., del-Río-Ortega, A., Resinas, M., Reijers, H.: Transforming unstructured natural language descriptions into measurable process performance indicators using hidden Markov models. Inf. Syst. 71, 27–39 (2017)Google Scholar
  22. 22.
    van der Aalst, W.: Process Mining: Data Science in Action. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49851-4CrossRefGoogle Scholar
  23. 23.
    van der Aalst, W., Rubin, V., Verbeek, H., van Dongen, B., Kindler, E., Günther, C.: Process mining: a two-step approach to balance between underfitting and overfitting. Softw. Syst. Model. 9(1), 87–111 (2010)CrossRefGoogle Scholar
  24. 24.
    van Dongen, B., Borchert, F.: BPI Challenge 2018. Eindhoven University of Technology. Dataset (2018).  https://doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972
  25. 25.
    van Eck, M.L., Sidorova, N., van der Aalst, W.M.P.: Discovering and exploring state-based models for multi-perspective processes. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 142–157. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45348-4_9CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Bart F. A. Hompes
    • 1
    • 2
    Email author
  • Wil M. P. van der Aalst
    • 1
    • 3
  1. 1.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Philips ResearchEindhovenThe Netherlands
  3. 3.Lehrstuhl für Informatik 9/Process and Data ScienceRWTH Aachen UniversityAachenGermany

Personalised recommendations