Advertisement

Discussion and Further Open Problems

  • Raluca Eftimie
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2232)

Abstract

The aim of this study was to review some of the local and nonlocal kinetic and hyperbolic models derived over the last few years to investigate movement and pattern formation across different biological communities. The emphasis was on the modelling of various self-organised behaviours for cell/animal aggregations, and the analytical and numerical methods used to investigate these behaviours. In this final chapter we discuss the biological relevance of some of the classical assumptions incorporated into the mathematical models, as well as the relevance of some spatial and spatio-temporal patterns presented in this review. We also discuss some of the open problems in the area, and suggest possible directions of future research.

References

  1. 1.
    D. Chowdhury, A. Schadschneider, N. Katsuhiro, Phys. Life Rev. 2(4), 318 (2005)CrossRefGoogle Scholar
  2. 2.
    A. Schadschneider, D. Chowdhury, K. Nishinari, Stochastic Transport in Complex Systems. From Molecules to Vehicles (Elsevier, Amsterdam, 2011)CrossRefGoogle Scholar
  3. 3.
    T. Vicsek, A. Zafeiris, Phys. Rep. 517(3–4), 71 (2010)Google Scholar
  4. 4.
    K. Hadeler, T. Hillen, F. Lutscher, Math. Models Methods Appl. Sci. 14(10), 1561 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    P.H. Chavanis, Phys. A Stat. Mech. Appl. 387, 5716 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    P.H. Chavanis, Commun. Nonlinear Sci. Numer. Simul. 15, 60 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    P. Degond, S. Motsch, J. Stat. Phys. 131, 989 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    K. Hadeler, Acta Appl. Math. 14, 91 (1989)MathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Busenberg, M. Iannelli, J. Math. Biol. 22, 145 (1985)MathSciNetCrossRefGoogle Scholar
  10. 10.
    M. Gyllenberg, G. Webb, J. Math. Biol. 28, 671 (1990)MathSciNetCrossRefGoogle Scholar
  11. 11.
    H. Inaba, J. Math. Biol. 28, 411 (1990)MathSciNetCrossRefGoogle Scholar
  12. 12.
    H. Pomeroy, F. Heppner, Auk 109, 256 (1992)CrossRefGoogle Scholar
  13. 13.
    I.D. Couzin, J. Krause, R. James, G. Ruxton, N.R. Franks, J. Theor. Biol. 218, 1 (2002)CrossRefGoogle Scholar
  14. 14.
    S. Wilson, Fish. Oceanogr. 13(4), 283 (2004)CrossRefGoogle Scholar
  15. 15.
    T. Schneirla, Am. Mus. Novit. 1253, 1 (1944)Google Scholar
  16. 16.
    D. Helbing, A. Johansson, H.Z. Al-Abideen, Phys. Rev. E 75, 046109 (2007)CrossRefGoogle Scholar
  17. 17.
    B. Axelsen, T. Anker-Nilssen, P. Fossum, C. Kvamme, L. Nøttestad, Can. J. Zool. 79, 1586 (2001)CrossRefGoogle Scholar
  18. 18.
    R. Fetecau, R. Eftimie, J. Math. Biol. 61(4), 545 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    T. Hillen, A. Stevens, Nonlinear Anal. Real World Appl. 1, 409 (2000)MathSciNetCrossRefGoogle Scholar
  20. 20.
    R. Eftimie, G. de Vries, M.A. Lewis, Proc. Natl. Acad. Sci. USA 104(17), 6974 (2007)MathSciNetGoogle Scholar
  21. 21.
    O.A. Igoshin, R. Welch, D. Kaiser, G. Oster, Proc. Natl. Acad. Sci. USA 101, 4256 (2004)CrossRefGoogle Scholar
  22. 22.
    O.A. Igoshin, G. Oster, Math. Biosci. 188, 221 (2004)MathSciNetCrossRefGoogle Scholar
  23. 23.
    U. Börner, A. Deutsch, M. Bär, Phys. Biol. 3, 138 (2006)CrossRefGoogle Scholar
  24. 24.
    N. Bellomo, C. Dogbé, SIAM Rev. 53, 409 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    I. Prigogine, R. Herman, Kinetic Theory of Vehicular Traffic (Elsevier, New York, 1971)zbMATHGoogle Scholar
  26. 26.
    S. Buchmueller, U. Weidman, Parameters for pedestrians, pedestrian-traffic and walking facilities. Technical Report 132, ETH, Zürich (2006)Google Scholar
  27. 27.
    Y. Liu, C. Sun, Y. Bie, Math. Probl. Eng. 2015, Article ID 308261, 6pp. (2015)Google Scholar
  28. 28.
    T. Yang, J.S. Park, Y. Choi, W. Choi, T.W. Ko, K. Lee, PLoS One 6(6), e20255 (2011)CrossRefGoogle Scholar
  29. 29.
    C. Qian, C. Wong, S. Swarup, K.H. Chiam, Appl. Environ. Microbiol. 79(15), 4734 (2013)CrossRefGoogle Scholar
  30. 30.
    A. Patterson, A. Gopinath, M. Goulian, P. Arratia, Sci. Rep. 5, 15761 (2015)CrossRefGoogle Scholar
  31. 31.
    V. Mwaffo, S. Butail, M. di Bernardo, M. Porfiri, Zebrafish 12(3), 250 (2015)CrossRefGoogle Scholar
  32. 32.
    M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, V. Zdravkovic, Proc. Natl. Acad. Sci. USA 105(5), 1232 (2008)CrossRefGoogle Scholar
  33. 33.
    J. Killeen, H. Thurfjell, S. Ciuti, D. Paton, M. Musiani, M. Boyce, Mov. Ecol. 2(1), 15 (2014)CrossRefGoogle Scholar
  34. 34.
    N. Shiwakoti, M. Sarvi, M. Burd, Saf. Sci. 66, 1 (2014)CrossRefGoogle Scholar
  35. 35.
    Z. Shahhoseini, M. Sarvi, PLoS One 12(8), e0182913 (2017)CrossRefGoogle Scholar
  36. 36.
    M. Haghani, M. Sarvi, Transp. Res. B 107, 253 (2018)CrossRefGoogle Scholar
  37. 37.
    C. Huang, K. Jacobson, M. Schaller, J. Cell Sci. 117, 4619 (2004)CrossRefGoogle Scholar
  38. 38.
    E. Cristiani, B. Piccoli, A. Tosin, Multiscale Model. Simul. 9(1), 155 (2011)MathSciNetCrossRefGoogle Scholar
  39. 39.
    B. Piccoli, A. Tosin, Arch. Ration. Mech. Anal. 199, 707 (2011)MathSciNetCrossRefGoogle Scholar
  40. 40.
    A. Sieben, J. Schumann, A. Seyfried, PLoS One 12(6), e0177328 (2017)CrossRefGoogle Scholar
  41. 41.
    P. Smouse, S. Focardi, P. Moorcroft, J. Kie, J. Forester, J. Morales, Philos. Trans. R Soc. Lond. B Biol. Sci. 365(1550), 2201 (2010)CrossRefGoogle Scholar
  42. 42.
    M. Bonsall, A. Hastings, J. Anim. Ecol. 73(6), 1043 (2004)CrossRefGoogle Scholar
  43. 43.
    G. Gellner, K. McCann, A. Hastings, Theor. Ecol. 9(4), 477 (2016)CrossRefGoogle Scholar
  44. 44.
    F. Lutscher, A. Stevens, J. Nonlinear Sci. 12, 619 (2002)MathSciNetCrossRefGoogle Scholar
  45. 45.
    U. Börner, A. Deutsch, H. Reichenbach, M. Bär, Phys. Rev. Lett. 89, 078101 (2002)CrossRefGoogle Scholar
  46. 46.
    P.L. Buono, R. Eftimie, M. Kovacic, L. van Veen, in Active Particles, vol. 2, ed. by N. Bellomo, P. Degond, E. Tadmor (Birkhäuser, Basel, 2018)Google Scholar
  47. 47.
    L. Arnold, Random Dynamical Systems (Springer, Berlin, 1998)CrossRefGoogle Scholar
  48. 48.
    L. Arnold, in IUTAM Symposium on Nonlinearity and Stochastic Structural Dynamics, ed. by S. Narayanan, R.N. Iyengar (Springer, Dordrecht, 2001), pp. 15–27Google Scholar
  49. 49.
    I. Chueshov, Monotone Random Systems - Theory and Applications (Springer, Berlin, 2002)CrossRefGoogle Scholar
  50. 50.
    M. Rasmussen, Attractivity and Bifurcation for Nonautonomous Dynamical Systems (Springer, Berlin, 2007)zbMATHGoogle Scholar
  51. 51.
    M. Bertotti, M. Delitala, Nonlinear Anal. Real World Appl. 9, 183 (2008)MathSciNetCrossRefGoogle Scholar
  52. 52.
    G.A. Marsan, N. Bellomo, M. Egidi, Kinet. Relat. Model. 1, 249 (2008)CrossRefGoogle Scholar
  53. 53.
    B. Carbonaro, C. Giordano, Math. Comput. Model. 41, 587 (2005)CrossRefGoogle Scholar
  54. 54.
    N. Bellomo, M. Delitala, Phys. Life Rev. 5, 183 (2008)CrossRefGoogle Scholar
  55. 55.
    N. Bellomo, G. Forni, Curr. Top. Dev. Biol. 81, 485 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Raluca Eftimie
    • 1
  1. 1.Division of MathematicsUniversity of DundeeDundeeUK

Personalised recommendations