Advertisement

Examining Diet and Foodways via Human Remains

  • Sarah Schrader
Chapter
Part of the Bioarchaeology and Social Theory book series (BST)

Abstract

In this chapter, I will describe how dietary reconstruction, assessed via human teeth and bone, can be used as yet another way to address everyday life. Like activity reconstruction, there are several methods that osteologists employ that can speak to what an individual consumed. It is important to note that eating is much more than just a functional activity—it is a social act that can be either public or private and simultaneously incorporates many aspects of identity and practice including food choice, preparation, presentation, and consumption. Thus, when we view the skeleton as embodied remains of social and biological experiences, we can address several aspects of this day-to-day experience. As in Chapter  3, I will discuss several of these methods including, stable isotope (carbon and nitrogen), compound-specific, and dental wear analyses, in subsections.

I then present a carbon and nitrogen isotope case study, which focuses on Nubians and Egyptonubians living in the Second Cataract region of Lower Nubia during the Second Millennia BCE. This region was conquered and colonized by the Egyptian Empire in 1943 BCE and a series of fortresses were built to enforce imperial control. The indigenous Nubians living in this region are known as the C-Group. Some Nubians adopted the burial practices of the Egyptians and are thus referred to as Pharaonic. Isotopic results indicate differing diets between the C-Group and Pharaonic samples. I suggest that this is not the product of the environment, but rather these data speak to the active social choice to consume certain foods. The C-Group sample likely consumed foods that were similar to the Nubian capital city, Kerma, and the Pharaonic sample may have eaten foods that were comparable to an Egyptian diet. I suggest that for the C-Group these isotopic data may illustrate the embodiment of daily resistance to imperial control. For the Pharaonic sample, their dietary patterns may also have been agentive, as they may have used identity fluidity to their advantage in an imperial social system.

Keywords

Carbon Nitrogen Social identity Agency Resistance C-Group Pharaonic Egypt Nubia 

References

  1. Adams, W. (1977). Nubia: Corridor to Africa. Princeton, NJ: Princeton University Press.Google Scholar
  2. Adler, C. J., Dobney, K., Weyrich, L. S., Kaidonis, J., Walker, A. W., Haak, W., Bradshaw, C. J. A., Townsend, G., Sołtysiak, A., Alt, K. W., Parkhill, J., & Cooper, A. (2013). Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nature Genetics, 45(4), 450-455CrossRefGoogle Scholar
  3. Agarwal, S. C. (2016). Bone morphologies and histories: Life course approaches in bioarchaeology. Yearbook of Physical Anthropology, 159(S61), S130–S149.CrossRefGoogle Scholar
  4. Agarwal, S. C., & Glencross, B. A. (2010). Examining nutritional aspects of bone loss and fragility across the life course in bioarchaeology. In T. Moffat & T. Prowse (Eds.), Human diet and nutrition in biocultural perspective: Past meets present (pp. 197–222). New York, NY: Berghahn Books.Google Scholar
  5. Aguilera, M., Zech-Matterne, V., Lepetz, S., & Balasse, M. (in press). Crop fertility conditions in North-Eastern Gaul during the La Tène and Roman Periods: A combined stable isotope analysis of archaeobotanical and archaeozoological remains. Environmental Archaeology: The Journal of Human Paleoecology.Google Scholar
  6. Aiello, L. C., & Wheeler, P. (1995). The expensive-tissue hypothesis: The brain and the digestive system in human and primate evolution. Current Anthropology, 36(2), 199–221.CrossRefGoogle Scholar
  7. Alcock, J. P. (2006). Food in the ancient world. Westport, CT: Greenwood Press.Google Scholar
  8. Ambrose, S. H. (1990). Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science, 17(4), 431–451.CrossRefGoogle Scholar
  9. Ambrose, S. H., Buikstra, J., & Kruegar, H. W. (2003). Status and gender differences in diet at Mound 72, Cahokia, revealed by isotopic analysis of bone. Journal of Anthropological Archaeology, 22(3), 217–226.CrossRefGoogle Scholar
  10. Ambrose, S. H., & DeNiro, M. J. (1986). Reconstruction of African human diet using bone collagen carbon and nitrogen isotope ratios. Nature, 319(23), 321–324.CrossRefGoogle Scholar
  11. Ambrose, H., & Norr, L. (1993). Experimental evidence for the relationship of carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In J. B. Lambert & G. Grupe (Eds.), Prehistoric human bone: Archaeology at the molecular level (pp. 1–37). Berlin, Germany: Springer.Google Scholar
  12. Arensburg, B. (1996). Ancient dental calculus and diet. Human Evolution, 11(2), 139–145.CrossRefGoogle Scholar
  13. Armelagos, G. J., Kolbacher, K., Collins, K. R., Cook, J., & Krafeld-Daugherty, M. (2001). Tetracycline consumption in prehistory. In M. Nelson, W. Hillen, & R. A. Greenwald (Eds.), Tetracyclines in biology, chemistry and medicine (pp. 219–236). Basel, Switzerland: Birkhäuser.CrossRefGoogle Scholar
  14. Aufderheide, A. C., & Rodríguez-Martín, C. (1998). The Cambridge encyclopedia of human paleopathology. Cambridge, UK: Cambridge University Press.Google Scholar
  15. Babraj, J., Cuthbertson, D., Smith, K., Langberg, H., Miller, B., Krogsgaard, M., Kjaer, M., & Rennie, M. (2005). Collagen synthesis in human musculoskeletal tissues and skin. American Journal of Physiology-Endocrinology and Metabolism, 289(5), 864–869.CrossRefGoogle Scholar
  16. Baker, B. J. (1992). Collagen composition in human skeletal remains from the NAX Cemetery (A.D. 350–550) in Lower Nubia. Unpublished Ph.D. dissertation, University of Massachusetts, Amherst, MA.Google Scholar
  17. Barton, H., & Torrence, R. (2015). Cooking up recipes for ancient starch: Assessing current methodologies and looking to the future. Journal of Archaeological Science, 56, 194–201.CrossRefGoogle Scholar
  18. Basha, W. A., Lamb, A. L., Zaki, M. E., Kandeel, W. A., Fares, N. H., & Chamberlain, A. T. (2018). Dietary seasonal variation in the Medieval Nubian population of Kulubnarti as indicated by the stable isotope composition of hair. Journal of Archaeological Science: Reports, 18, 161–168.CrossRefGoogle Scholar
  19. Bassett, E. J., Keith, M. S., Armelagos, G. J., & Martin, D. L. (1980). Tetracycline-labeled human bone from ancient Sudanese Nubia (A.D. 350). Science, 209(4464), 1532–1534.CrossRefGoogle Scholar
  20. Bax, J. S., & Ungar, P. S. (1999). Incisor labial surface wear striations in modern humans and their implications for handedness in Middle and Late Pleistocene hominids. International Journal of Osteoarchaeology, 9(3), 189–198.CrossRefGoogle Scholar
  21. Beaumont, J., & Montgomery, J. (2015). Oral histories a simple method of assigning chronological age to isotopic values from human dentine collagen. Annals of Human Biology, 42(4), 407–414.CrossRefGoogle Scholar
  22. Beaumont, J., Montogomery, J., Buckberry, J., & Jay, M. (2015). Infant mortality and isotopic complexity: New approaches to stress, maternal health, and weaning. American Journal of Physical Anthropology, 157(3), 441–457.CrossRefGoogle Scholar
  23. Beldados, A., & Constantini, L. (2011). Sorghum exploitation at the Kassala and its environs, North Eastern Sudan in the second and first millennia BC. Nyame Akuma, 75, 33–39.Google Scholar
  24. Bergtresser, P. R., & Taylor, J. R. (1977). Epidermal ‘turnover time’—A new examination. British Journal of Dermatology, 96(5), 503–509.CrossRefGoogle Scholar
  25. Bescherer Metheny, K., & Beaudry, M. C. (Eds.). (2015). Archaeology of food. Lanham, MD: Rowman & Littlefield.Google Scholar
  26. Bietak, M. (1968). Studien zur chronologie der Nubischen C-Gruppe: Ein beitrag zur frühgeschichte unternubiens zwischen 2200 und 1550 vor Chr. Vienna, Austria: Hermann Böhlaus Nachf.Google Scholar
  27. Bocherens, H., & Drucker, D. (2003). Trophic level isotopic enrichment of carbon and nitrogen bone collagen: Case studies from recent and ancient terrestrial ecosystems. International Journal of Osteoarchaeology, 13(1–2), 46–53.CrossRefGoogle Scholar
  28. Bonnet, C. (1986). Kerma territoire et metropole: Quatre lecons au College de France (Vol. 9). Cairo, Egypt: Institut Français d’Archéologie Orientale.Google Scholar
  29. Bourdieu, P. (1984). Distinction: A social critique of the judgment of taste. Cambridge, MA: Harvard University Press.Google Scholar
  30. Brandt, S. A., & Carder, N. (1987). Pastoral rock art in the Horn of Africa: Making sense of udder chaos. World Archaeology, 19(2), 194–213.CrossRefGoogle Scholar
  31. Brass, M. (2003). Tracing the origins of the Ancient Egyptian cattle cult. In A. Eyma & C. J. Bennett (Eds.), A Delta-man in Yebu: Occasional volume of the Egyptologists’ electronic forum No. 1 (pp. 101–110). Parkland, FL: Universal Publishers.Google Scholar
  32. Breasted, J. H. (1906). Ancient records of Egypt. Chicago, IL: The University of Chicago Press.Google Scholar
  33. Breslin, P. A. S. (2013). An evolutionary perspective on food and human taste. Current Biology, 23(9), R409–R418.CrossRefGoogle Scholar
  34. Brickley, M., & Ives, R. (2008). The bioarchaeology of metabolic bone disease. Oxford, UK: Academic Press.CrossRefGoogle Scholar
  35. Brill, W. (1977). Biological nitrogen fixation. Scientific American, 236(3), 68–74.CrossRefGoogle Scholar
  36. Britton, K. (2017). A stable relationship: Isotopes and bioarchaeology are in it for the long haul. Antiquity, 91(358), 853–864.CrossRefGoogle Scholar
  37. Britton, K., Fuller, B. T., Tütken, T., Mays, S., & Richards, M. P. (2017). Oxygen isotope analysis of human phosphate evidences weaning age in archaeological populations. American Journal of Physical Anthropology, 157(2), 226–241.CrossRefGoogle Scholar
  38. Britton, K., Grimes, V., Niven, L., Steele, T., McPherron, S., Soressi, M., Kelly, T. E., Jaubert, J., Hublin, J.-J., & Richards, M. P. (2011). Strontium isotope evidence for migration in late Pleistocene Rangifer: Implications for Neanderthal hunting strategies at the Middle Palaeolithic site of Jonzac, France. Journal of Human Evolution, 61(2), 176–185.CrossRefGoogle Scholar
  39. Buckley, S., Usai, D., Jakob, T., Radini, A., & Hardy, K. (2014). Dental calculus reveals unique insights into food items, cooking and plant processing in prehistoric central Sudan. PLoS One, 9(7), e100808.CrossRefGoogle Scholar
  40. Buikstra, J., & Ubelaker, D. (1994). Standards for data collection from human skeletal remains. Fayetteville, AR: Arkansas Archaeological Survey Research Series No. 44.Google Scholar
  41. Burckhardt, J. L. (1819). Travels in Nubia. London, UK: Association for Promoting the Discovery of the Interior Parts of Africa.Google Scholar
  42. Burr, D. B. (2002). The contribution of the organic matrix to bone’s material properties. Bone, 31(1), 8–11.CrossRefGoogle Scholar
  43. Burt, N. M. (2013). Stable isotope ratio analysis of breastfeeding and weaning practices of children from Medieval Fishergate House York, UK. American Journal of Physical Anthropology, 152(3), 407–416.CrossRefGoogle Scholar
  44. Burt, N. M., & Garvie-Lok, S. (2013). A new method of dentine microsampling of deciduous teeth for stable isotope ratio analysis. Journal of Archaeological Science, 40(11), 3854–3864.CrossRefGoogle Scholar
  45. Burton, J., & Katzenberg, M. A. (2000). Strontium isotopes and the chemistry of bones and teeth. In M. A. Katzenberg & S. R. Saunders (Eds.), Biological anthropology of the human skeleton (pp. 505–514). New York, NY: Wiley-Liss.Google Scholar
  46. Butzer, K. W. (1976). Early hydraulic civilization in Egypt: A study in cultural ecology. Chicago, IL: University of Chicago Press.Google Scholar
  47. Buzon, M. R. (2006). Biological and ethnic identity in New Kingdom Nubia. Current Anthropology, 47(4), 683–695.CrossRefGoogle Scholar
  48. Buzon, M. (2011). Nubian identity in the Bronze Age: Patterns of cultural and biological variation. Bioarchaeology of the Near East, 5, 19–40.Google Scholar
  49. Buzon, M., & Bombak, A. (2010). Dental disease in the Nile Valley during the New Kingdom. International Journal of Osteoarchaeology, 20(4), 371–387.Google Scholar
  50. Buzon, M., Smith, S. T., & Simonetti, A. (2016). Entanglement and the formation of ancient Nubian Napatan state. American Anthropologist, 118(2), 284–300.CrossRefGoogle Scholar
  51. Carmody, R. N., & Wrangham, R. W. (2009). The energetic significance of cooking. Evolutionary Anthropology, 57(4), 379–391.Google Scholar
  52. Chaix, L. (1996). Les boeufs a cornes paralleles: Archeologie et ethnographie. Sahara, 8, 95–97.Google Scholar
  53. Chaix, L. (2001). Animals as Symbols: The bucrania of the Grave KN 24 (Kerma, Northern Sudan). In H. Buitenhuis & W. Prummel (Eds.), Animals and man in the past (pp. 364–370). Groningen, the Netherlands: ARC-Publicatie 41.Google Scholar
  54. Chaix, L. (2004). Les bœufs aficains à cornes déformées: Quelques éléments de réflexion. Anthropozoologica, 39(1), 335–342.Google Scholar
  55. Chaix, L., Dubosson, J., & Honegger, M. (2012). Bucrania from the Eastern Cemetery at Kerma (Sudan) and the practice of cattle horn deformation. Prehistory of Northeastern Africa, 11, 189–212.Google Scholar
  56. Chaix, L., & Grant, A. (1992). Cattle in Ancient Nubia. Anthropozoologica, 16, 61–66.Google Scholar
  57. Chen, X.-L., Hu, S.-M., Hu, Y.-W., Wang, W.-L., Ma, Y.-Y., Lü, P., & Want, C.-S. (2016). Raising practices of Neolithic livestock evidenced by stable isotope analysis in the Wei River Valley, North China. International Journal of Osteoarchaeology, 26(1), 42–52.CrossRefGoogle Scholar
  58. Chenery, C. A., Pashley, V., Lamb, A. L., Sloane, H. J., & Evans, J. A. (2012). The oxygen isotope relationship between the phosphate and structural carbonate fractions of human bioapatite. Rapid Communications in Mass Spectrometry, 26(3), 309–319.CrossRefGoogle Scholar
  59. Chisholm, B. S., Nelson, D. E., & Schwarcz, H. P. (1982). Stable-carbon isotope ratios as a measure of marine versus terrestrial protein in ancient diets. Science, 216(4550), 1131–1132.CrossRefGoogle Scholar
  60. Cohen, M., & Armelagos, G. (Eds.). (1984). Paleopathology at the origins of agriculture. New York, NY: Academic Press.Google Scholar
  61. Colonese, A. C., Farrell, T., Lucquin, A., Firth, D., Charlton, S., Robson, H. K., Alexander, M., & Craig, O. E. (2015). Archaeological bone lipids as paleodietary markers. Rapid Communications in Mass Spectrometry, 29(7), 611–618.CrossRefGoogle Scholar
  62. Colonese, A. C., Lucquin, A., Guides, E. P., Thomas, R., Best, J., Fothergill, B. T., Sykes, N., Foster, A., Miller, H., Poole, K., Maltby, M., Von Tersch, M., & Craig, O. E. (2017). The identification of poultry processing in archaeological ceramic vessels uing in-situ isotope references for organic residue analysis. Journal of Archaeological Science, 78, 179–192.CrossRefGoogle Scholar
  63. Conklin, B. A. (2001). Consuming grief: Compassionate cannibalism in an Amazonian society. Austin, TX: University of Texas Press.Google Scholar
  64. Corr, L. T., Richards, M. P., Grier, C., Mackie, A., Beattie, O., & Evershed, R. P. (2009). Probing dietary change of the Kwäday Dän Ts’ìnchį individual, an ancient glacier body from British Columbia: II. Deconvoluting whole skin and bone collagen δ13C values via carbon isotope analysis of individual amino acids. Journal of Archaeological Science, 36(1), 12–13.CrossRefGoogle Scholar
  65. Corr, L. T., Richards, M. P., Jim, S., Ambrose, S. H., Mackie, A., & Evershed, R. P. (2008). Probing dietary change of the Kwäday Dän Ts’ìnchi individual, an ancient glacier body from British Columbia: I. Complementary use of marine lipid biomarker and carbon isotope signatures as novel indicators of a marine diet. Journal of Archaeological Science, 35(8), 2102–2110.CrossRefGoogle Scholar
  66. Counihan, C. M., & Kaplan, S. L. (2013). Food and gender: Identity and power. London, UK: Routledge.CrossRefGoogle Scholar
  67. Cox, G., & Sealy, J. (1997). Investigating identity and life histories: Isotopic analysis and historical documentation of slave skeletons found on the Cape Town foreshore, South Africa. International Journal of Historical Archaeology, 1(3), 207–224.CrossRefGoogle Scholar
  68. Cristiani, E., Radini, A., Borić, D., Robson, H. K., Caricola, I., Carra, M., Mutri, G., Oxilia, G., Zupancich, A., Šlaus, M., & Vujević, D. (2018). Dental calculus and isotopes provide direct evidence of fish and plant consumption in Mesolithic Mediterranean. Scientific Reports, 8, 8147.CrossRefGoogle Scholar
  69. Cucina, A., Cantillo, C. P., Sosa, T. S., & Tiesler, V. (2011). Carious lesions and maize consumption among the Prehispanic Maya: An analysis of a coastal community in northern Yucatan. American Journal of Physical Anthropology, 145(4), 560–567.CrossRefGoogle Scholar
  70. Cucina, A., & Tiesler, V. (2003). Dental caries and antemortem tooth loss in the Northern Peten area, Mexico: A biocultural perspective on social status differences among the Classic Maya. American Journal of Physical Anthropology, 122(1), 1–10.CrossRefGoogle Scholar
  71. Darby, W. J., Ghalioungui, P., & Grivetti, L. (1977). Food: The gift of Osiris. New York, NY: Academic Press.Google Scholar
  72. Davis, W. (1984). Representation and knowledge in the prehistoric rock art of Africa. The African Archaeological Review, 2, 7–35.CrossRefGoogle Scholar
  73. Dawson, T. E., Mambelli, S., Plamboeck, A. H., Templer, P. H., & Tu, K. P. (2002). Stable isotopes in plant ecology. Annual Review of Ecological Systems, 33, 507–559.CrossRefGoogle Scholar
  74. Dawson, H., & Robson Brown, K. (2013). Exploring the relationship between dental wear and status in Late Medieval subadults from England. American Journal of Physical Anthropology, 150(3), 433–441.CrossRefGoogle Scholar
  75. Deines, P. (1980). The isotopic composition of reduced organic carbon. In P. Fritz & J. Fontes (Eds.), Handbook of environmental isotope geochemistry (Vol. 1, pp. 329–406). Amsterdam, The Netherlands: Elsevier.Google Scholar
  76. DeNiro, M. J. (1985). Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature, 317, 806–809.CrossRefGoogle Scholar
  77. DeNiro, M. J., & Epstein, S. (1981). Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta, 45(3), 341–351.CrossRefGoogle Scholar
  78. DeNiro, M. J., & Schoeninger, M. J. (1983). Stable carbon and nitrogen isotope ratios of bone collagen: Variations within individuals, between sexes, and within populations raised on monotonous diets. Journal of Archaeological Science, 10(3), 199–203.CrossRefGoogle Scholar
  79. de Wet, J. M. J., & Huckabay, J. P. (1967). The origin of Sorghum bicolor: Distribution and domestication. Evolution, 21(4), 787–802.CrossRefGoogle Scholar
  80. Dirar, H. A. (1993). The indigenous fermented food of the Sudan: A study of African food and nutrition. Wallingford, UK: CAB International.Google Scholar
  81. Dufour, D. L., Goodman, A. H., & Pelto, G. H. (2013). Nutritional anthropology: Biocultural perspectives on food and nutrition. Oxford, UK: Oxford University Press.Google Scholar
  82. Dupras, T. L., & Schwarcz, H. P. (2001). Strangers in a strange land: Stable isotope evidence for human migration in the Dakhleh Oasis, Egypt. Journal of Archaeological Science, 28, 1199–1208.CrossRefGoogle Scholar
  83. Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S. R., Nelson, K. E., & Relman, D. A. (2005). Diversity of the human intestinal microbial flora. Science, 308(5728), 1635–1638.CrossRefGoogle Scholar
  84. Edwards, D. N. (1996). Sorghum, beer and Kushite society. Norwegian Archaeological Review, 29(2), 65–77.CrossRefGoogle Scholar
  85. Edwards, D. N. (2004). Nubian past: An archaeology of the Sudan. New York, NY: Routledge.CrossRefGoogle Scholar
  86. Eerkens, J. W., Berget, A. G., & Bartelink, E. J. (2011). Estimating weaning and early childhood diet from serial micro-samples of dentin collagen. Journal of Archaeological Science, 38(11), 3101–3111.CrossRefGoogle Scholar
  87. el Harake, W., Furman, M., Cook, B., Nair, K., Kukowski, J., & Brodsky, I. (1998). Measurements of dermal collagen synthesis in vivo in humans. American Journal of Physiology, 37(4), 586–591.Google Scholar
  88. Emery, W. B. (1965). Egypt in Nubia. London, UK: Hutchinson.Google Scholar
  89. Erdal, Y. S. (2008). Occlusal grooves in anterior dentition among Kovuklukaya inhabitants (Sinop, northern Anatolia, 10th century AD). International Journal of Osteoarchaeology, 18(2), 152–166.CrossRefGoogle Scholar
  90. Eriksson, G., & Liden, K. (2013). Dietary life histories in Stone Age Northern Europe. Journal of Anthropological Archaeology, 32(3), 288–302.CrossRefGoogle Scholar
  91. Eshed, V., Gopher, A., & Hershkovitz, I. (2006). Tooth wear and dental pathology at the advent of agriculture: New evidence from the Levant. American Journal of Physical Anthropology, 130(2), 145–149.CrossRefGoogle Scholar
  92. Evershed, R. P. (2007). Exploiting molecular and isotopic signals at the Mesolithic-Neolithic transition. Proceedings of the British Academy, 144, 141–164.Google Scholar
  93. Evershed, R. P. (2008). Organic residue analysis in archaeology: The archaeological biomarker revolution. Archaeometry, 60(6), 895–924.CrossRefGoogle Scholar
  94. Evershed, R. P., Dudd, S. N., Copley, M. S., Berstan, R., Stott, A. W., Mottram, H., Buckley, S. A., & Crossman, Z. (2002). Chemistry of archaeological animal fats. Accounts of Chemical Research, 35(8), 660–668.CrossRefGoogle Scholar
  95. Evershed, R. P., Turner-Walker, G., Hedges, R. E. M., Tuross, N., & Leyden, A. (1995). Preliminary results for the analysis of lipids in ancient bone. Journal of Archaeological Science, 22, 277–290.CrossRefGoogle Scholar
  96. Fahy, G. E., Deter, C., Pitfield, R., Miszkiewicz, J. J., & Mahoney, P. (2017). Bone deep: Variation in stable isotope ratios and histomorphometric measurements of bone remodeling within adult human. Journal of Archaeological Science, 87, 10–16.CrossRefGoogle Scholar
  97. Falk, P. (1991). Homo culinarius: Towards an historical anthropology of taste. Social Science Information, 30(4), 757–790.CrossRefGoogle Scholar
  98. Ferriman, D. (1971). Human hair growth in health and disease. Springfield, IL: Charles C Thomas.Google Scholar
  99. Finucane, B. C. (2007). Mummies, maize, and manure: Multi-tissue stable isotope analysis of late prehistoric human remains from the Ayacucho Valley, Perú. Journal of Archaeological Science, 34(12), 2115–2124.CrossRefGoogle Scholar
  100. Fischler, C. (1988). Food, self and identity. Social Science Information, 27(2), 275–292.CrossRefGoogle Scholar
  101. Fogel, M. L., & Tuross, N. (2003). Extending the limits of paleodietary studies of humans with compound specific carbon isotope analysis of amino acids. Journal of Archaeological Science, 30(5), 535–545.CrossRefGoogle Scholar
  102. Formicola, V. (1987). Neolithic transition and dental changes: The case of an Italian site. Journal of Human Evolution, 16(2), 231–239.CrossRefGoogle Scholar
  103. Frost, H. M. (1969). Tetracycline-based histological analysis of bone remodeling. Calcified Tissue International, 3(1), 211–237.CrossRefGoogle Scholar
  104. Fry, B. (2006). Stable isotope ecology. Baton Rouge, LA: Springer.CrossRefGoogle Scholar
  105. Fuller, D. Q., Denham, T., Arroyo-Kalin, M., Lucas, L., Stevens, C. J., Qin, L., Allaby, F. G., & Purugganan, M. D. (2014). Convergent evolution and parallelism in plant domestication revealed by an expanding archaeological record. PNAS, 111(17), 6147–6152.CrossRefGoogle Scholar
  106. Fuller, B. T., Fuller, J. L., Sage, N. E., Harris, D. A., O’Connell, T. C., & Hedges, R. E. M. (2005). Nitrogen balance and δ15N: Why you’re not what you eat during nutritional stress. Rapid Communications in Mass Spectrometry, 19(18), 2497–2506.CrossRefGoogle Scholar
  107. Fuller, D. (2004). Kawa. Sudan & Nubia, 6, 70–74.Google Scholar
  108. Gagnon, C. M., Billman, B. R., Carcelén, J., & Reinhard, K. J. (2013). Tracking shifts in coca use in the Moche Valley: Analysis of oral health indicators and dental calculus microfossils. Ñawpa Pacha, 33(2), 193–214.CrossRefGoogle Scholar
  109. Gismondi, A., D’gostino, A., Canuti, L., Di Marco, G., Martínez-Labarga, C., Angle, M., Rickards, O., & Canini, A. (2018). Dental calculus reveals diet habits and medicinal plant use in the Early Medieval Italian population of Colonna. Journal of Archaeological Science: Reports, 20, 556–564.CrossRefGoogle Scholar
  110. Goody, J. (1982). Cooking, cuisine and class. A study of comparative sociology. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  111. Grinsell, L. V. (2015). The ancient burial-mounds of England. London, UK: Routledge.Google Scholar
  112. Guillet, C., Boirie, Y., & Walrand, S. (2004). An integrative approach to in-vivo protein synthesis measurement: From whole tissue to specific proteins. Current Opinion in Clinical Nutrition and Metabolic Care, 7(5), 531–538.CrossRefGoogle Scholar
  113. Guiry, E. J., Hepburn, J. C., & Richards, M. P. (2016). High-resolution serial sampling for nitrogen stable isotope analysis of archaeological mammal teeth. Journal of Archaeological Science, 69, 21–28.CrossRefGoogle Scholar
  114. Gumerman, G. (1997). Food and complex societies. Journal of Archaeological Method and Theory, 4(2), 105–139.CrossRefGoogle Scholar
  115. Haaland, R. (1987). Socio-economic differentiation in the Neolithic Sudan. Oxford, UK: British Archaeological Reports.Google Scholar
  116. Haaland, R. (1992). Fish, pots and grain: Early and Mid-Holocene adaptations in the Central Sudan. The African Archaeological Review, 10(1), 43–64.CrossRefGoogle Scholar
  117. Haaland, R. (1995). Sedentism, cultivation, and plant domestication in the Holocene Middle Nile region. Journal of Field Archaeology, 22(2), 157–174.Google Scholar
  118. Haaland, R. (1999). The puzzle of the late emergence of domesticated sorghum in the Nile Valley. In C. Gosden & J. G. Hather (Eds.), The prehistory of food: Appetites for change (pp. 397–418). London, UK & New York, NY: Routledge.Google Scholar
  119. Haaland, R. (2012). Changing food ways as indicators of emerging complexity in Sudanese Nubia: From Neolithic agropastoralists to the Meroitic civilisation. Azania: Archaeological Research in Africa, 47(3), 327–342.CrossRefGoogle Scholar
  120. Hafsaas, H. (2007). Pots and people in an anthropological perspective: The C-Group people of Lower Nubia as a case study. Cahiers de Recherches de l’Institut de Papyrologie et d’Égyptologie de Lille, 26, 163–171.Google Scholar
  121. Halprin, K. M. (1972). Epidermal ‘turnover time’—A reexamination. British Journal of Dermatology, 86(1), 14–19.CrossRefGoogle Scholar
  122. Hastorf, C. A. (2017). The Social archaeology of food. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  123. Haydock, H., Clarke, L., Craig-Atkins, R., Howcroft, R., & Buckberry, J. L. (2013). Weaning at Anglo-Saxon Raunds: Implications for changing breastfeeding practice in Britain over two millennia. American Journal of Physical Anthropology, 151(4), 604–612.CrossRefGoogle Scholar
  124. Hedges, R. E. M., Clement, J. G., Thomas, D. L., & O’Connell, T. C. (2007). Collagen turnover in the adult femoral mid-shaft: Modeled from anthropogenic radiocarbon tracer measurements. American Journal of Physical Anthropology, 133(2), 808–816.CrossRefGoogle Scholar
  125. Hedges, R. E. M., & Reynard, L. M. (2007). Nitrogen isotopes and the trophic level of humans in archaeology. Journal of Archaeological Science, 34(8), 1240–1251.CrossRefGoogle Scholar
  126. Henry, A. G., Brooks, A. S., & Piperno, D. R. (2014). Plant foods and the dietary ecology of Neanderthals and early modern humans. Journal of Human Evolution, 69, 44–54.CrossRefGoogle Scholar
  127. Hill, A. V. S., & Orth, M. (1998). Bone remodeling. British Journal of Orthodontics, 25(2), 101–107.CrossRefGoogle Scholar
  128. Hillson, S. W. (1996). Dental anthropology. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  129. Hladik, C. M., Chivers, D., & Pasquet, P. (1999). On diet and gut size in non-human primates and humans: Is there a relationship to brain size? Current Anthropology, 40(5), 695–697.Google Scholar
  130. Hobson, K. A., & Clark, R. G. (1992). Assessing avian diets using stable isotopes II: Factors influencing diet-tissue fractionation. The Condor, 94(1), 189–197.CrossRefGoogle Scholar
  131. Holder, S., Reitsema, L. J., Garland, C. J., Smith, A. K., Lunsford, J., Krajewska, M., & Kiozłowski, T. (2017). Addressing the inertness of bones and teeth in isotopic studies of stress and disease: A review of advances and future prospects. Poster presented at the 86 annual meeting of the American Association of Physical Anthropologists, New Orleans, LA.Google Scholar
  132. Hornsey, I. S. (2003). A history of beer and brewing. Cambridge, UK: Royal Society of Chemistry.Google Scholar
  133. Howland, M. R., Corr, L. T., Young, S. M. M., Jones, V., Jim, S., van der Merwe, N. J., Mitchell, A. D., & Evershed, R. P. (2003). Expression of dietary isotope signal in the compound-specific δ13C values of pig bone lipids and amino acids. International Journal of Osteoarchaeology, 13(6), 54–65.CrossRefGoogle Scholar
  134. Hubbe, M., Torres-Rouff, C., Neves, W. A., King, L. M., da-Gloria, P., & Costa, M. A. (2012). Dental health in Northern Chile’s Atacama oases: Evaluating the Middle Horizon (AD 500-1000) impact on local diet. American Journal of Physical Anthropology, 148(1), 62–72.CrossRefGoogle Scholar
  135. Iacumin, P., Bocherens, H., Chaix, L., & Marioth, A. (1998). Stable carbon and nitrogen isotopes as dietary indicators of ancient Nubian populations (Northern Sudan). Journal of Archaeological Science, 25, 293–301.CrossRefGoogle Scholar
  136. Iacumin, P., Bocherens, H., Mariotti, A., & Longinelli, A. (1996). An isotopic palaeoenvironmental study of human skeletal remains from the Nile Valley. Palaeogeography, Palaeoclimatology, Palaeoecology, 126(1–20), 15–30.CrossRefGoogle Scholar
  137. Ikram, S. (1995). Choice cuts: Meat production in Ancient Egypt. Leuven, Belgium: Peeters Press.Google Scholar
  138. Ikram, S. (2000). Meat processing. In P. T. Nicholson & I. Shaw (Eds.), Ancient Egyptian materials and technology (pp. 656–671). Cambridge, UK: Cambridge University Press.Google Scholar
  139. James, T. G. H. (1984). Pharaoh’s people: Scenes from life in imperial Egypt. Chicago, IL: University of Chicago Press.Google Scholar
  140. Jim, S., Ambrose, S., & Evershed, R. P. (2004). Stable carbon isotopic evidence for differences in the dietary origin of bone cholesterol, collagen, and apatite: Implications for their use in paleodietary reconstruction. Geochimica et Cosmochimica Acta, 68(1), 61–72.CrossRefGoogle Scholar
  141. Katsimbri, P. (2017). The biology of normal bone remodeling. European Journal of Cancer Care, 26(6), e12740.CrossRefGoogle Scholar
  142. Katzenberg, M. A. (2000). Stable isotope analysis: A tool for studying past diet, demography, and life history. In M. A. Katzenberg & S. R. Saunders (Eds.), Biological anthropology of the human skeleton (pp. 413–441). New York, NY: Wiley-Liss.Google Scholar
  143. Katzenberg, M. A., & Weber, A. (1999). Stable isotope ecology and palaeodiet in the Lake Baikal region of Siberia. Journal of Archaeological Science, 26, 651–659.CrossRefGoogle Scholar
  144. Keenleyside, A. (2008). Dental pathology and diet at Apallonia, a Greek Colony on the Black Sea. International Journal of Osteoarchaeology, 18(3), 262–279.CrossRefGoogle Scholar
  145. Kellner, C. M., & Schoeninger, M. J. (2007). A simple carbon isotope model for reconstructing prehistoric human diet. American Journal of Physical Anthropology, 133(4), 1112–1127.CrossRefGoogle Scholar
  146. Klaus, H. D., & Tam, M. E. (2010). Oral health and the postcontact adaptive transition: A contextual reconstruction of diet in Morrope, Peru. American Journal of Physical Anthropology, 141(4), 594–609.CrossRefGoogle Scholar
  147. Knudson, K. J., Aufderheide, A. C., & Buikstra, J. E. (2007). Seasonality and paleodiet in the Chiribaya polity of southern Peru. Journal of Archaeological Science, 34(3), 451–462.CrossRefGoogle Scholar
  148. Krueger, H. W., & Sullivan, C. H. (1984). Models for carbon isotope fractionation between diet and bone. In J. R. Turnlund & P. E. Johnson (Eds.), Stable isotopes in nutrition (Vol. 258, pp. 205–220). Cambridge, UK: American Chemical Society.CrossRefGoogle Scholar
  149. Krueger, K. L., Ungar, P. S., Guatelli-Steinberg, D., Hublin, J.-J., Pérez-Pérez, A., Trinkaus, E., & Willman, J. C. (2017). Anterior dental microwear textures show habitat-driven variability in Neanderthal behavior. Journal of Human Evolution, 105, 13–23.CrossRefGoogle Scholar
  150. Lamb, A. L., Evans, J. E., Buckley, R., & Appleby, J. (2014). Multi-isotope analysis demonstrates significant lifestyle changes in King Richard III. Journal of Archaeological Science, 50, 559–565.CrossRefGoogle Scholar
  151. Larsen, C. S. (1995). Biological changes in human populations with agriculture. Annual Review of Anthropology, 24, 185–213.CrossRefGoogle Scholar
  152. Larsen, C. S. (2006). The agricultural revolution as environmental catastrophe: Implications for health and lifestyle in the Holocene. Quaternary International, 150(1), 12–20.CrossRefGoogle Scholar
  153. Larsen, C. S. (2015). Bioarchaeology: Interpreting behavior from the human skeleton (2nd ed.). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  154. Larsen, C. S., Teaford, M. F., & Sandford, M. K. (1998). Teeth as tools at Tutu: Extramasticatory behavior in prehistoric St. Thomas, U.S. Virgin Islands. In J. R. Lukacs (Ed.), Human dental development, morphology and pathology (pp. 401–420). Eugene, OR: University of Oregon Press.Google Scholar
  155. Lee-Thorp, J. A. (2008). On isotopes and old bones. Archaeometry, 60(6), 925–950.CrossRefGoogle Scholar
  156. Lee-Thorp, J. A., Sealy, J. C., & van der Merwe, N. J. (1989). Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. Journal of Archaeological Science, 16(6), 585–599.CrossRefGoogle Scholar
  157. Lee-Thorp, J., & Sponheimer, M. (2006). Contributions of biogeochemistry to understanding hominin dietary ecology. Yearbook of Physical Anthropology, 49(43), 131–148.CrossRefGoogle Scholar
  158. LeGeros, R. Z., Trautz, O. R., LeGeros, J. P., & Klein, E. (1967). Apatite crystallites: Effects of carbonate on morphology. Science, 155(3768), 1409–1411.CrossRefGoogle Scholar
  159. Leonard, C., Vashro, L., O’Connell, J. F., & Henry, A. G. (2015). Plant microremains in dental calculus as a record of plant consumption: A test with Twe forager-horticulutralists. Journal of Archaeological Science: Reports, 2, 449–457.CrossRefGoogle Scholar
  160. Lévi-Strauss, C. (1966). The raw and the cooked. New York, NY: Penguin.Google Scholar
  161. Lieverse, A. R. (1999). Diet and aetiology of dental calculus. International Journal of Osteoarchaeology, 9(4), 219–232.CrossRefGoogle Scholar
  162. Lillie, M., & Richards, M. (2000). Stable isotope analysis and dental evidence of diet at the Mesolithic-Neolithic transition in Ukraine. Journal of Archaeological Science, 27(10), 965–972.CrossRefGoogle Scholar
  163. Lingström, P., van Houte, J., & Kashket, S. (2000). Food starches and dental caries. Critical Reviews in Oral Biology and Medicine, 11(3), 366–380.CrossRefGoogle Scholar
  164. Listi, G. A. (2011). Bioarchaeological analysis of diet during the Coles Creek Period in the Southern Lower Mississippi Valley. American Journal of Physical Anthropology, 144(1), 30–40.CrossRefGoogle Scholar
  165. Littleton, J., & Frohlich, B. (1993). Fish-eaters and farmers: Dental pathology in the Arabian Gulf. American Journal of Physical Anthropology, 92(4), 427–447.CrossRefGoogle Scholar
  166. Longin, R. (1971). New method of collagen extraction for radiocarbon dating. Nature, 230, 241–242.CrossRefGoogle Scholar
  167. Lubell, D., Jackes, M., Schwarcz, H., Knyf, M., & Meiklejohn, C. (1994). The Mesolithic-Neolithic transition in Portugal: Isotopic and dental evidence of diet. Journal of Archaeological Science, 21(2), 201–216.CrossRefGoogle Scholar
  168. Lukacs, J. R. (2017a). Bioarchaeology of oral health: Sex and gender differences in dental disease. In S. C. Agarwal & J. K. Wesp (Eds.), Exploring sex and gender in bioarchaeology (pp. 263–291). Albuquerque, NM: University of New Mexico Press.Google Scholar
  169. Lukacs, J. R. (2017b). Dental adaptations of Bronze Age Harappans: Occlusal wear, crown size, and dental pathology. International Journal of Paleopathology, 18, 69–81.CrossRefGoogle Scholar
  170. Lukacs, J. R., & Largaespada, L. L. (2006). Explaining sex differences in dental caries prevalence: Saliva, hormones, and “life history” etiologies. American Journal of Human Biology, 18(4), 540–555.CrossRefGoogle Scholar
  171. Lukacs, J. R., & Pastor, R. F. (1988). Activity-inducted patterns of dental abrasion in prehistoric Pakistan: Evidence from Mehrgarh and Harappa. American Journal of Physical Anthropology, 76(3), 377–398.CrossRefGoogle Scholar
  172. Lyon, T. D. B., & Baxter, M. S. (1978). Stable carbon isotopes in human tissues. Nature, 48, 187–191.Google Scholar
  173. Macko, S. A., Engel, M. H., Andrusevich, V., Lubec, G., O’Connell, T. C., & Hedges, R. E. M. (1999). Documenting the diet in ancient human populations through stable isotope analysis of hair. Philosophical Transactions of the Royal Society B, 354, 65–76.CrossRefGoogle Scholar
  174. Mahoney, P., Schmidt, C. W., Deter, C., Remy, A., Slavin, P., Johns, S. E., & Miszkiewicz, J. J. (2016). Deciduous enamel 3D microwear texture analysis as an indicator of childhood diet in medieval Canterbury, England. Journal of Archaeological Science, 66, 128–136.CrossRefGoogle Scholar
  175. Makarewicz, C. A. (2016). Toward an integrated isotope zooarchaeology. In G. Grupe & C. G. McGlynn (Eds.), Isotopic landscapes in bioarchaeology (pp. 189–209). Berlin and Heidelberg, Germany: Springer.CrossRefGoogle Scholar
  176. Makarewicz, C. A., & Sealy, J. (2015). Dietary reconstruction, mobility, and the analysis of ancient skeletal tissues: Expanding the prospects of stable isotope research in archaeology. Journal of Archaeological Science, 56, 146–158.CrossRefGoogle Scholar
  177. Mariotti Lippi, M., Pisaneschi, L., Sarti, L., Lari, M., & Moggi-Cecchi, J. (2017). Insights into the Copper-Bronze Age diet in central Italy: Plant microremains in dental calculus from Grotta dello Scoglietto (Southern Tuscany, Italy). Journal of Archaeological Science: Reports, 15, 30–39.CrossRefGoogle Scholar
  178. Marshall, F., & Hildebrand, E. (2002). Cattle before crops: The beginning of food production in Africa. Journal of World Prehistory, 16(2), 99–143.CrossRefGoogle Scholar
  179. Marsteller, S. J., Knudson, K. J., Gordon, G. G., & Anbar, A. D. (2017). Biogeochemical reconstructions of life histories as a method to assess regional interactions; Stable oxygen and radiogenic strontium isotopes and Late Intermediate Period mobility on the Central Peruvian Coast. Journal of Archaeological Science: Reports, 13, 535–546.CrossRefGoogle Scholar
  180. Mays, S. (2010). The archaeology of human bones. New York, NY: Routledge.CrossRefGoogle Scholar
  181. Mays, S. (2016). A study of the potential of deciduous incisor wear as an indicator of weaning using a human skeletal population. International Journal of Osteoarchaeology, 26(4), 725–731.CrossRefGoogle Scholar
  182. McManus-Fry, E., Knecht, R., Dobney, K., Richards, M. P., & Britton, K. (2018). Dog-human dietary relationships in Yup’ik western Alaska: The stable isotope and zooarchaeological evidence from pre-contact Nunalleq. Journal of Archaeological Science: Reports, 17, 964–972.CrossRefGoogle Scholar
  183. McNeil, N. I. (1984). The contribution of the large intestine to energy supplies in man. American Journal of Clinical Nutrition, 39(2), 338–342.CrossRefGoogle Scholar
  184. Mekota, A.-M., Grupe, G., Ufer, S., & Cuntz, U. Serial analysis of stable nitrogen and carbon isotopes in hair: Monitoring starvation and recovery phases of patients suffering from anorexia nervosa. Rapid Communications in Mass Spectrometry, 2006, 2006(10), 1604–1610.CrossRefGoogle Scholar
  185. Meng, Y., Zhang, H.-Q., Pan, F., He, Z.-D., Shao, J.-L., & Ding, Y. (2011). Prevalence of dental caries and tooth wear in a Neolithic population (6700-5600 years BP) from northern China. Archives of Oral Biology, 56(11), 1424–1435.CrossRefGoogle Scholar
  186. Méry, S., & Tengberg, M. (2009). Food for eternity? The analysis of a date offering from a 3rd millennium BC grave at Hili N, Abu Dhabi (United Arab Emirates). Journal of Archaeological Science, 36(9), 2012–2017.CrossRefGoogle Scholar
  187. Messer, E. (1984). Anthropological perspectives on diet. Annual Review of Anthropology, 13(1), 205–249.CrossRefGoogle Scholar
  188. Mickleburgh, H. L. (2016). Dental wear and pathology in the Precolonial Caribbean: Evidence for dietary change in the ceramic age. International Journal of Osteoarchaeology, 26(2), 290–302.CrossRefGoogle Scholar
  189. Milton, K. (1999). A hypothesis to explain the role of meat-eating in human evolution. Evolutionary Anthropology, 8(1), 11–21.CrossRefGoogle Scholar
  190. Mintz, S. W., & Du Bois, C. M. (2002). The anthropology of food and eating. Annual Review of Anthropology, 31, 99–119.CrossRefGoogle Scholar
  191. Molnar, P. (2008). Dental wear and oral pathology: Possible evidence and consequences of habitual use of teeth in a Swedish Neolithic Sample. American Journal of Physical Anthropology, 136(4), 423–431.CrossRefGoogle Scholar
  192. Molnar, P. (2011). Extramasticatory dental wear reflecting habitual behavior and health in past populations. Clinical Oral Investigations, 15(5), 681–689.CrossRefGoogle Scholar
  193. Moore, D., Phillips, S., Babraj, J., Smith, K., & Rennie, M. (2005). Myofibrillar and collagen protein synthesis in human skeletal muscle in young men after maximal shortening and lengthening contractions. American Journal of Physiology-Endocrinology and Metabolism, 288(6), 1153–1159.CrossRefGoogle Scholar
  194. Mora, A., Arriaza, B. T., Standen, V. G., Valdiosera, C., Salim, A., & Smith, C. (2017). High-resolution palaeodietary reconstruction: Amino acid δ 13C analysis of keratin from single hairs of mummified human individuals. Quaternary International, 436(A), 96–113.CrossRefGoogle Scholar
  195. Munson, P. J. (1976). Archaeological data on the origins of cultivation in the Southwestern Sahara and their implications for West Africa. In J. R. Harlan, J. M. J. de Wet, & A. B. L. Stemler (Eds.), Origins of African plant domestication (pp. 187–209). Ann Arbor, MI: The University of Michigan.Google Scholar
  196. Murray, M. A. (2000). Legends of ancient Egypt. Mineola. NY: Dover Publications.Google Scholar
  197. Naito, Y. I., Chikaraishi, Y., Ohkouchi, N., Drucker, D. G., & Bocherens, H. (2013a). Nitrogen isotopic composition of collagen amino acids as an indicator of aquatic resource consumption: Insights from Mesolithic and Epipalaeolithic archaeological sites in France. World Archaeology, 45(3), 338–359.CrossRefGoogle Scholar
  198. Naito, Y. I., Chikaraishi, Y., Ohkouchi, N., & Yoneda, M. (2013b). Evaluation of carnivory in inland Jomon hunter-gatherers based on nitrogen isotopic compositions of individual amino acids in bone collagen. Journal of Archaeological Science, 40(7), 2913–2923.CrossRefGoogle Scholar
  199. Nystrom, P. (2016). Deciduous enamel 3D microwear texture analysis as an indicator of childhood diet in medieval Canterbury, England. Journal of Archaeological Science, 66, 128–136.CrossRefGoogle Scholar
  200. O’Connell, T. C., & Hedges, R. E. M. (1999). Isotopic comparison of hair and bone: Archaeological analyses. Journal of Archaeological Science, 26(6), 661–665.CrossRefGoogle Scholar
  201. O’Connell, T. C., & Hedges, R. E. M. (2001). Isolation and isotopic analysis of individual amino acids from archaeological bone collagen: A new method using RP-HPLC. Archaeometry, 43(3), 421–438.CrossRefGoogle Scholar
  202. O’Connell, T. C., Hedges, R. E. M., Healy, M. A., & Simpson, A. H. R. W. (2001). Isotopic comparison of hair, nail and bone: Modern analysis. Journal of Archaeological Science, 28, 1247–1255.CrossRefGoogle Scholar
  203. O’Connell, T. C., Kneale, C. J., Tasevska, N., & Kuhnle, G. G. C. (2012). The diet-body offset in human nitrogen isotopic values: A controlled dietary study. American Journal of Physical Anthropology, 149(3), 426–434.CrossRefGoogle Scholar
  204. O’Connor, D. (1993). Ancient Nubia: Egypt’s rival in Africa. Philadelphia, PA: University Museum of Archaeology and Anthropology, University of Pennsylvania.Google Scholar
  205. Parfitt, A. M., Travers, R., Rauch, F., & Glorieux, F. H. (2000). Structural and cellular changes during bone growth in healthy children. Bone, 27(4), 487–494.CrossRefGoogle Scholar
  206. Pearson, J. A., Haddow, S. D., Hillson, S. W., Knüsel, C. J., Larsen, C. S., & Sadvari, J. W. (2015). Stable carbon and nitrogen isotope analysis and dietary reconstruction through the life course at Neolithic Çatalhöyük, Turkey. Journal of Social Archaeology, 15(2), 210–232.CrossRefGoogle Scholar
  207. Pedersen, A. M., Bardow, A., Jenson, S. B., & Nauntofte, B. (2002). Saliva and gastrointestinal functions of taste, mastication, swallowing and digestion. Oral Diseases, 8(3), 117–129.CrossRefGoogle Scholar
  208. Pestle, W. J., Crowley, B. E., & Weirauch, M. T. (2014). Quantifying inter-laboratory variability in stable isotope analysis of ancient skeletal remains. PLoS One, 9(8), e102944.CrossRefGoogle Scholar
  209. Pfeiffer, S., Crowder, C., Harrington, L., & Brown, M. (2006). Secondary osteon and haversian canal dimensions as behavioral indicators. American Journal of Physical Anthropology, 131(4), 460–468.CrossRefGoogle Scholar
  210. Pollard, A. M., Ditchfield, P., Piva, E., Wallis, S., Fayls, C., & Ford, S. (2012). ‘Sprouting like cockle amongst the wheat’: The St. Brice’s Day massacre and the isotopic analysis of human bones from St. John’s College, Oxford. Oxford Journal of Archaeology, 31(1), 83–102.CrossRefGoogle Scholar
  211. Power, R. C., Salazar-Garcia, D. C., Wittig, R. M., & Henry, A. G. (2014). Assessing use and suitability of scanning electron microscopy in the analysis of micro remains in dental calculus. Journal of Archaeological Science, 49, 160–169.CrossRefGoogle Scholar
  212. Power, R. C., Salazar-Garcia, D. C., Straus, L. G., González Morales, M. R., & Henry, A. G. (2015a). Microremians from El Mirón Cave human dental calculus suggest a mixed plant-animal subsistence economy during the Magdalenian in Northern Iberia. Journal of Archaeological Science, 60, 39–46.CrossRefGoogle Scholar
  213. Power, R. C., Salazar-Garcia, D. C., Wittig, R. M., Freiberg, M., & Henry, A. G. (2015b). Dental calculus evidence of Taï Forest Chimpanzee plant consumption and life history transitions. Scientific Reports, 5, 15161.CrossRefGoogle Scholar
  214. Power, R. C., Salazar-Garcia, D. C., Rubini, M., Darlas, A., Harvati, K., Walker, M., Hublin, J.-J., & Henry, A. G. (2018). Dental calculus indicates widespread plant use within the stable Neanderthal dietary niche. Journal of Human Evolution, 119, 27–41.CrossRefGoogle Scholar
  215. Price, T. D., & Burton, J. H. (2012). An introduction to archaeological chemistry. New York, NY: Springer.Google Scholar
  216. Price, T. D., Meiggs, D. C., Weber, M.-J., & Pike-Tay, A. (2017). The migration of Late Pleistocene reindeer: Isotopic evidence from Northern Europe. Archaeological and Anthropological Sciences, 9(3), 371–394.CrossRefGoogle Scholar
  217. Prowse, T. L., Saunders, S. R., Schwarcz, H. P., Garnsey, P., Macchiarelli, R., & Bondioli, L. (2008). Isotopic and dental evidence for infant and young child feeding practices in an Imperial Roman skeletal sample. American Journal of Physical Anthropology, 137(3), 294–308.CrossRefGoogle Scholar
  218. Radini, A., Nikita, E., Buckley, S., Copeland, L., & Hardy, K. (2017). Beyond food: The multiple pathways for inclusion of materials into ancient dental calculus. American Journal of Physical Anthropology, 162(S63), 71–83.CrossRefGoogle Scholar
  219. Richards, M. P., & Hedges, R. E. M. (1999). Stable isotope evidence for similarities in the types of marine foods used by late Mesolithic humans as sites along the Atlantic coast of Europe. Journal of Archaeological Science, 26(6), 717–722.CrossRefGoogle Scholar
  220. Robling, A. G., Duijvelaar, K. M., Geevers, J. V., Ohashi, N., & Turner, C. H. (2001). Modulation of appositional and longitudinal bone growth in the rat ulna by applied static and dynamic force. Bone, 29(2), 105–113.CrossRefGoogle Scholar
  221. Romer, J. (1984). Ancient lives: Daily life in Egypt of the Pharaohs. New York, NY: Henry Holt & Co.Google Scholar
  222. Rozin, P. (1996). The socio-cultural context of eating and food choice. In H. L. Meiselman & H. J. H. MacFie (Eds.), Food choice, acceptance and consumption (pp. 83–104). London, UK: Chapman & Hall.CrossRefGoogle Scholar
  223. Saffirio, L. (1972). Food and dietary habits in ancient Egypt. Journal of Human Evolution, 1(3), 297–305.CrossRefGoogle Scholar
  224. Saitoh, M., Uzuka, M., & Sakamoto, M. (1967). Rate of hair growth. In W. Montagna & R. L. Dobson (Eds.), Advances in biology of skin IX: Hair growth (pp. 183–201). Oxford, UK: Pergamon Press.Google Scholar
  225. Samman, P. D., & Fenton, D. A. (1986). The nails in disease. London, UK: William Heinemann Medical Books.Google Scholar
  226. Samuel, D. (1996a). Archaeology of ancient Egyptian beer. Journal of the American Society of Brewing Chemists, 54(1), 3–12.CrossRefGoogle Scholar
  227. Samuel, D. (1996b). Investigation of ancient Egyptian baking and brewing methods by correlative Microscopy. Science, 273(5274), 488–490.CrossRefGoogle Scholar
  228. Samuel, D. (2000). Brewing and baking. In P. T. Nichols & I. Shaw (Eds.), Ancient Egyptian materials and technology. Cambridge, UK: Cambridge University Press.Google Scholar
  229. Sandberg, P. A., Sponheimer, M., Lee-Thorp, J., & Van Gerven, D. (2014). Intra-tooth stable isotope analysis of dentine: A step toward addressing selective mortality in the reconstruction of life history in the archaeological record. American Journal of Physical Anthropology, 155(2), 281–293.CrossRefGoogle Scholar
  230. Sandias, M., & Müldner, G. (2015). Diet and herding strategies in a changing environment: Stable isotope analysis of Bronze Age and Late Antique skeletal remains from Ya’amūn, Jordan. Journal of Archaeological Science, 63, 24–32.CrossRefGoogle Scholar
  231. Säve-Söderbergh, T. (1949). A Buhen stela from the Second Intermediate Period (Khartūm No.18). The Journal of Egyptian Archaeology, 35, 50–58.Google Scholar
  232. Säve-Söderbergh, T. (1984). The Scandinavian joint expedition to Sudanese Nubia 1961-1964. Norwegian Archaeological Review, 17(1), 1–10.CrossRefGoogle Scholar
  233. Säve-Söderbergh, T. (1989). Middle Nubian sites. Partille, Denmark: Paul Astrom.Google Scholar
  234. Säve-Söderbergh, T., & Troy, L. (1991). New Kingdom Pharaonic sites: The finds and the sites Scandanavian Joint Expedition to Nubia (Vol. 5). Oslo, Sweden: Universitetsforlaget.Google Scholar
  235. Schmidt, C. W. (2001). Dental microwear evidence for a dietary shift between two nonmaize-reliant prehistoric human populations from Indiana. American Journal of Physical Anthropology, 114(2), 139–145.CrossRefGoogle Scholar
  236. Schmidt, C. W. (2010). On the relationship of dental microwear to dental macrowear. American Journal of Physical Anthropology, 142(1), 67–73.Google Scholar
  237. Schmidt, C. W., Beach, J. J., McKinley, J. I., & Eng, J. T. (2016). Distinguishing dietary indicators of pastoralists and agriculturalists via dental microwear texture analysis. Surface Topography: Metrology and Properties, 4, 014008.Google Scholar
  238. Schoeninger, M. J. (1985). Trophic level effects on 15N/14N and 13C/12C ratios in bone collagen and strontium levels in bone mineral. Journal of Human Evolution, 14, 515–525.CrossRefGoogle Scholar
  239. Schoeninger, M. J. (2011). Diet reconstruction and ecology using stable isotope ratios. In C. S. Larsen (Ed.), A companion to biological anthropology (pp. 445–464). Chichester, UK: Wiley-Blackwell.CrossRefGoogle Scholar
  240. Schoeninger, M. J., & DeNiro, M. J. (1984). Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochimica et Cosmochimica Acta, 48(4), 625–639.CrossRefGoogle Scholar
  241. Schoeninger, M. J., Iwaniec, U. T., & Glander, K. E. (1997). Stable isotope ratios indicate diet and habitat use in New World Monkeys. American Journal of Physical Anthropology, 103(1), 69–83.CrossRefGoogle Scholar
  242. Schoeninger, M. J., Iwaniec, U. T., & Nash, L. T. (1998). Ecological attributes recorded in stable isotope ratios of arboreal prosimian hair. Oecologia, 113(2), 222–230.CrossRefGoogle Scholar
  243. Schoeninger, M. J., & Moore, K. (1992). Bone stable isotope studies in archaeology. Journal of World Prehistory, 6(2), 247–296.CrossRefGoogle Scholar
  244. Schoeninger, M. J., & Peebles, C. S. (1981). Effect of mollusc eating on human bone strontium levels. Journal of Archaeological Science, 8(4), 391–397.CrossRefGoogle Scholar
  245. Schroeder, H., O’Connell, T. C., Evans, J. A. S., Shuler, K. A., & Hedges, R. E. M. (2009). Trans-atlantic slavery: Isotopic evidence for forced migration to Barbados. American Journal of Physical Anthropology, 139(4), 547–557.CrossRefGoogle Scholar
  246. Schurr, M. R. (1998). Using stable nitrogen-isotopes to study weaning behavior in past populations. World Archaeology, 30(2), 327–342.CrossRefGoogle Scholar
  247. Schwarcz, H. P., Dupras, T. L., & Gairgrieve, S. I. (1999). 15N enrichment in the Sahara: In search of a global relationship. Journal of Archaeological Science, 26(6), 629–636.CrossRefGoogle Scholar
  248. Schwarcz, H. P., Melbye, J., Katzenberg, M. A., & Knyf, M. (1985). Stable isotopes in human skeletons of southern Ontario: Reconstructing paleodiet. Journal of Archaeological Science, 12(3), 187–206.CrossRefGoogle Scholar
  249. Scott, R. M., & Halcrow, S. E. (2017). Investigating weaning using dental microwear analysis: A review. Journal of Archaeological Science: Reports, 11, 1–11.CrossRefGoogle Scholar
  250. Scott, R. S., Ungar, P. S., Bergstrom, T. S., Brown, C. A., Childs, B. E., Teaford, M. F., & Walker, A. (2005). Dental microwear texture analysis reflects diets of living primates and fossil hominins. Nature, 436, 693–695.CrossRefGoogle Scholar
  251. Scott, R. S., Ungar, P. S., Bergstrom, T. S., Brown, C. A., Childs, B. E., Teaford, M. F., & Walker, A. (2006). Dental microwear texture analysis: Technical considerations. Journal of Human Evolution, 51(4), 339–349.CrossRefGoogle Scholar
  252. Sealy, J., Armstrong, R., & Schrire, C. (1995). Beyond lifetime averages: Tracing life histories through isotopic analysis of different calcified tissues from archaeological human skeletons. Antiquity, 69(263), 290–300.CrossRefGoogle Scholar
  253. Sealy, J. C., Merwe, N. J. v. d., Lee-Thorp, J. A., & Lanham, J. (1987). Nitrogen isotope Ecology in Southern Africa: Implications for environmental and dietary tracing. Geochimica et Cosmochimica Acta, 51(10), 2707–2717.CrossRefGoogle Scholar
  254. Shellis, R. P., Featherstone, J. D. B., & Lussi, A. (2006). Understanding the chemistry of dental erosion. In A. Lussi & C. Ganss (Eds.), Erosive tooth wear: From diagnosis to therapy (Vol. 25, pp. 163–179). Basel, Switzerland: Karger.Google Scholar
  255. Shin, J., O’Connell, T. C., Black, S., & Hedges, R. E. M. (2004). Differentiating bone osteonal turnover rates by density fractionation: Validation using the bomb 14C atmospheric pulse. Radiocarbon, 46(2), 853–861.CrossRefGoogle Scholar
  256. Skedros, J. G., Knight, A. N., Clark, G. C., Crowder, C. M., Dominguez, V. M., Qiu, S., Mulhern, D. M., Donahue, S. W., Busse, B., Hulsey, B. I., Zedda, M., & Sorenson, S. M. (2013). Scaling of Haversian canal surface area to secondary osteon bone volume in ribs and limb bones. American Journal of Physical Anthropology, 151(2), 230–244.CrossRefGoogle Scholar
  257. Smith, B. N., & Epstein, S. (1971). Two categories of 13C/12C ratios for higher plants. Plant Physiology, 47(3), 380–384.CrossRefGoogle Scholar
  258. Smith, S. T. (1992). Intact tombs of the Seventeeth and Eighteenth Dynasties from Thebes and the New Kingdom burial system. Mitteilungen des Deutschen Archäologischen Instituts Kairo, 48, 193–231.Google Scholar
  259. Smith, S. T. (1995). Askut in Nubia: The economics and ideology of Egyptian imperialism in the Second Millennium BC. London, UK: Kegan Paul.Google Scholar
  260. Smith, S. T. (1997). State and empire in the Middle and New Kingdom. In J. Lustig (Ed.), Anthropology and Egyptology: A developing dialogue (Vol. 8, pp. 66–89). Sheffield, UK: Sheffield Academic Press.Google Scholar
  261. Smith, S. T. (1998). Nubia and Egypt: Interaction, acculturation, and secondary state formation from the Third to First Millennium B.C. In J. G. Cusick (Ed.), Studies in culture contact: Interaction, culture change and archaeology (pp. 256–287). Carbondale, IL: Southern Illinois University.Google Scholar
  262. Smith, S. T. (2003). Wretched Kush: Ethnic identities and boundaries in Egypt’s Nubian Empire. London, UK: Routledge.Google Scholar
  263. Smith, S. T. (2013). The garrison and inhabitants: A view from Askut. In F. Jesse & C. Vogel (Eds.), The power of walls (pp. 269–292). Köln, Germany: Heinrich-Barth-Institut.Google Scholar
  264. Smith, S. T., & Buzon, M. (2014). Identity, commemoration, and remembrance in colonial encounters: Burials at Tombos during the Egyptian New Kingdom Nubian Empire and its aftermath. In B. W. Porter & A. T. Boutin (Eds.), Remembering the dead in the ancient Near East: Recent contributions from bioarchaeology and mortuary archaeology (pp. 185–216). Boulder, CO: University Press of Colorado.Google Scholar
  265. Sobal, J., Bisogni, C. A., & Jastran, M. (2014). Food choice is multifaceted, contextual, dynamic, multilevel, integrated, and diverse. Mind, Brain, and Education, 8(1), 6–12.CrossRefGoogle Scholar
  266. Somerville, A. D., Martin, M. A., Hayes, L. P., Hayward, D., Walker, P. L., & Schoeninger, M. J. (2017). Explorign patterns and pathways of dietary change: Preferred foods, oral health, and stable isotope analysis of hair from the Dani of Mulia, Papua, Indonesia. Current Anthropology, 58(1), 31–56.CrossRefGoogle Scholar
  267. Stenhouse, M. J., & Baxter, M. S. (1976). Glasgow University radiocarbon measurements VIII. Radiocarbon, 18(2), 161–171.CrossRefGoogle Scholar
  268. Stenhouse, M. J., & Baxter, M. S. (1979). The uptake of bomb 14C in humans. In R. Berger & H. Suess (Eds.), Radiocarbon Dating (pp. 324–341). Berkeley, CA: University of California Press.Google Scholar
  269. Stott, A. W., & Evershed, R. P. (1996). δ13C analysis of cholesterol preserved in archaeological bones and teeth. Analytical Chemistry, 68(24), 4402–4408.CrossRefGoogle Scholar
  270. Szpak, P., Millaire, J.-F., White, C. D., & Longstaffe, F. J. (2014). Small scale camelid husbandry on the north coast of Peru (Virú Valley): Insight from stable isotope analysis. Journal of Anthropological Archaeology, 36, 110–129.CrossRefGoogle Scholar
  271. Tayles, N., Domett, K., & Nelson, K. (2000). Agriculture and dental caries? The case of rice in prehistoric Southeast Asia. World Archaeology, 32(1), 68–83.CrossRefGoogle Scholar
  272. Tayles, N. G., Domett, K., & Halcrow, S. E. (2009). Can dental caries be interpreted as evidence of farming? The Asian experience. Frontiers of Oral Biology, 13, 162–166.CrossRefGoogle Scholar
  273. Teaford, M. F., & Oyen, O. J. (1989). In vivo and in vitro turnover in dental microwear. American Journal of Physical Anthropology, 80(4), 447–460.CrossRefGoogle Scholar
  274. Temple, D. H., & Larsen, C. S. (2007). Dental caries prevalence as evidence for agriculture and subsistence variation during the Yayoi Period in Prehistoric Japan: Biocultural interpretations of an economy in transition. American Journal of Physical Anthropology, 134(4), 501–512.CrossRefGoogle Scholar
  275. Thompson, A. H., Chaix, L., & Richards, M. P. (2008). Stable Isotopes and diet at Ancient Kerma, Upper Nubia (Sudan). Journal of Archaeological Science, 35(2), 376–387.CrossRefGoogle Scholar
  276. Thompson, A. H., Richards, M. P., Shortland, A., & Zakrzewski, S. R. (2005). Isotopic palaeodiet studies of Ancient Egyptian fauna and humans. Journal of Archaeological Science, 32(3), 451–463.CrossRefGoogle Scholar
  277. Tieszen, L. L., & Fagre, T. (1993). Effect of diet quality and composition on the isotopic composition of respiratory CO2, bone collagen, bioapatite, and soft tissues. In J. B. Lambert & G. Grupe (Eds.), Prehistoric human bone: Archaeology at the molecular level (pp. 121–155). Berlin, Germany: Springer.CrossRefGoogle Scholar
  278. Tomczyk, W., Giersz, M., Sołtysiak, A., Kamenov, G., & Krigbaum, J. (in press). Patterns of camelid management in Wari Empire reconstructed using multiple stable isotope analysis: Evidence from Castillo de Huarmey, northern coast of Peru. Archaeological and Anthropological Sciences.Google Scholar
  279. Török, L. (2009). Between two worlds: The frontier region between ancient Nubia and Egypt, 3700 BC-AD 500. Leiden, The Netherlands: Brill.Google Scholar
  280. Towers, J., Gledhill, A., Bond, J., & Montgomery, J. (2014). An investigation of cattle birth seasonality using δ13C and δ18O profiles within first molar enamel. Archaeometry, 56(S1), 208–236.CrossRefGoogle Scholar
  281. Triffit, J. T. (1980). The organic matrix of bone tissue. In M. R. Urist (Ed.), Fundamental and clinical bone physiology (pp. 45–82). Philadelphia, PA: J. B. Lippincott.Google Scholar
  282. Trigger, B. (1976). Nubia under the Pharoahs. Boulder, CO: Westview Press.Google Scholar
  283. Tripp, J. A., McCullagh, J. S. O., & Hedges, R. E. M. (2006). Preparative separation of underivatized amino acids for compound-specific stable isotope analysis and radiocarbon dating of hydrolyzed bone collagen. Journal of Separation Science, 29(1), 41–48.CrossRefGoogle Scholar
  284. Tsutaya, T., & Yoneda, M. (2015). Reconstruction of breastfeeding and weaning practices using stable isotope and trace element analysis: A review. American Journal of Physical Anthropology, 156(S59), 2–21.CrossRefGoogle Scholar
  285. Turner, B. L., Klaus, H. D., Livengood, S. V., Brown, L. E., Saldaña, F., & Wester, C. (2013). The variable roads to sacrifice: Isotopic investigations of human remains from Chotuna-Huaca de los Sacrificios, lambayeque, Peru. American Journal of Physical Anthropology, 151(1), 22–37.CrossRefGoogle Scholar
  286. Turner, C. G. (1979). Dental anthropological indications of agriculture among the Jomon people of Central Japan. American Journal of Physical Anthropology, 51(4), 619–636.CrossRefGoogle Scholar
  287. Twiss, K. (2012). The archaeology of food and social diversity. Journal of Archaeological Research, 20(4), 357–395.CrossRefGoogle Scholar
  288. Ulijaszek, S., Mann, N., & Elton, S. (2012). Evolving human nutrition. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  289. Ungar, P. S., Grine, F. E., & Teaford, M. F. (2006). Diet in early Homo: A review of the evidence and a new model of adaptive versatility. Annual Review of Anthropology, 35, 209–228.CrossRefGoogle Scholar
  290. Ungar, P. S., Scott, R. S., Scott, J. R., & Teaford, M. (2008). Dental microwear analysis: Historical perspectives and new approaches. In J. Irish & G. C. Nelson (Eds.), Technique and application in dental anthropology (pp. 389–425). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  291. Valentin, F., Bocherens, H., Gratuze, B., & Sand, C. (2006). Dietary patterns during the late prehistoric/historic period in Cikobia island (Fiji): Insights from stable isotopes and dental pathologies. Journal of Archaeological Science, 33(10), 1396–1410.CrossRefGoogle Scholar
  292. van der Merwe, N. J., & Vogel, J. C. (1978). 13C content of human collagen as a measure of prehistoric diet in Woodland North America. Nature, 276, 815–816.CrossRefGoogle Scholar
  293. van Klinken, G. J. (1991). Dating and dietary reconstruction by isotopic analysis of amino acids in fossil bone collagen—With special references to the Caribbean. Unpublished Ph.D. dissertation, University of Groningen, The Netherlands.Google Scholar
  294. Vodanović, M., Peroš, K., Zukanović, A., Knežević, M., Novak, M., Šlaus, M., & Brkić, H. (2012). Periodontal diseases at the transition from the late antique to the early mediaeval period in Croatia. Archives of Oral Biology, 57(10), 1362–1376.CrossRefGoogle Scholar
  295. Vogel, J. C., & van der Merwe, N. J. (1977). Isotopic evidence for early maize cultivation in New York State. American Antiquity, 42(2), 238–242.CrossRefGoogle Scholar
  296. Wang, T. T., Fuller, B. T., Wei, D., Chang, X. E., & Hu, Y. W. (2016). Investigating dietary patterns with stable isotope ratios of collagen and starch grain analysis of dental calculus at the Iron Age Cemetery Site of Heigouliang, Xinjiang, China. International Journal of Osteoarchaeology, 26(4), 693–704.CrossRefGoogle Scholar
  297. Warinner, C., Rodrigues, J. F. M., Vyas, R., Trachsel, C., Shved, N., Grossmann, J., & Cappellini, E. (2014). Pathogens and host immunity in the ancient human oral cavity. Nature Genetics, 46, 336–344.CrossRefGoogle Scholar
  298. Warinner, C., Speller, C., & Collins, M. J. (2015). A new era in palaeomicrobiology: Prospects for ancient dental calculus as a long-term record of the human oral microbiome. Philosophical Transactions of the Royal Society B, 370, 20130376.CrossRefGoogle Scholar
  299. Waters-Rist, A. L., Bazaliiskii, V. I., Weber, A. W., & Katzenberg, M. A. (2011). Infant and child diet in Neolithic hunter-fisher-gatherers from Cis-Baikal, Siberia: Intra-long bone stable nitrogen and carbon isotope ratios. American Journal of Physical Anthropology, 146(2), 225–241.CrossRefGoogle Scholar
  300. Watson, J. T. (2008). Changes in food processing and occlusal dental wear during the Early Agricultural Period in Northwest Mexico. American Journal of Physical Anthropology, 135(1), 92–99.CrossRefGoogle Scholar
  301. Watson, J. T., Arriaza, B. T., Standen, V. G., & Ovalle, I. M. (2013). Tooth wear related to marine foraging, agro-pastoralism and the Formative transition on the Northern Chilean Coast. International Journal of Osteoarchaeology, 23(3), 287–302.CrossRefGoogle Scholar
  302. Wengrow, D. (2001). Rethinking ‘cattle cults’ in early Egypt: Towards a prehistoric perspective on the Narmer Palette. Cambridge Archaeological Journal, 11(1), 91–104.CrossRefGoogle Scholar
  303. White, C. D. (1993). Isotopic determination of seasonality in diet and death from Nubian mummy hair. Journal of Archaeological Science, 20(6), 657–666.CrossRefGoogle Scholar
  304. White, C. D., & Armelagos, G. J. (1997). Osteopenia and stable isotope ratios in bone collagen of Nubian female mummies. American Journal of Physical Anthropology, 103(2), 185–199.CrossRefGoogle Scholar
  305. White, C. D., Longstaffe, F. J., & Law, K. R. (1999). Seasonal stability and variation in diet as reflected in human mummy tissues from the Kharga Oasis and the Nile Valley. Palaeogeography, Palaeoclimatology, Palaeoecology, 147(3–4), 209–222.CrossRefGoogle Scholar
  306. White, C. D., Nelson, A. J., Longstaffe, F. J., Grupe, G., & Jung, A. (2009). Landscape bioarchaeology at Pacatnamu, Peru: Inferring mobility from δ13C and δ15N values of hair. Journal of Archaeological Science, 36(7), 1527–1537.CrossRefGoogle Scholar
  307. White, C. D., & Schwarcz, H. P. (1994). Temporal trends in stable isotopes for Nubian mummy tissues. American Journal of Physical Anthropology, 93(2), 165–187.CrossRefGoogle Scholar
  308. Williams, B. B. (1986). Excavations between Abu Simbel and the Sudan frontier, The A-Group royal cemetery at Qustul: Cemetery L (Vol. 1). Chicago, IL: Oriental Institute of the University of Chicago.Google Scholar
  309. Williams, B. B. (1991). A prospectus for exploring the historical essence of Ancient Nubia. In W. V. Davies (Ed.), Egypt and Africa (pp. 74–91). London, UK: British Museum Press.Google Scholar
  310. Williams, J. S., & Katzenberg, M. A. (2012). Seasonal fluctuations in diet and death during the late horizon: A stable isotopic analysis of hair and nail from the central coast of Peru. Journal of Archaeological Science, 39(1), 41–57.CrossRefGoogle Scholar
  311. Williams, J. S., White, C. D., & Longstaffe, F. J. (2005). Trophic level and macronutrient shift effects associated with the weaning process in the Postclassic Maya. American Journal of Physical Anthropology, 128(4), 781–790.CrossRefGoogle Scholar
  312. Wilkins, J. B., & Nadeau, R. (Eds.). (2015). A companion to food in the ancient world. Chicester, UK: Wiley Blackwell.Google Scholar
  313. Willmes, M., Kinsley, L., Moncel, M. H., Armstrong, R. A., Aubert, M., Eggins, S., & Grün, R. (2016). Improvement of laser ablation in situ micro-analysis to identify diagenetic alteration and measure strontium isotope ratios in fossil human teeth. Journal of Archaeological Science, 70, 102–116.CrossRefGoogle Scholar
  314. Wilson, H. (2001). Egyptian food and drink. Buckinghamshire, UK: Shire Publications Ltd.Google Scholar
  315. Wrangham, R. W. (2009). Catching fire: How cooking made us human. New York, NY: Basic Books.Google Scholar
  316. Wrangham, R. W., Jones, J. H., Laden, G., Pilbeam, D., & Conklin-Brittain, N. (1999). The raw and the stolen: Cooking and the ecology of human origins. Current Anthropology, 40(5), 567–594.Google Scholar
  317. Xia, Y., Zhang, J., Yu, F., Zhang, H., Wang, T., Hu, Y., & Fuller, B. T. (2018). Breastfeeding, weaning, and dietary practices during the Western Zhou Dynasty (1122–771 BC) at Boyangcheng, Anhui Province, China. American Journal of Physical Anthropology, 165(2), 343–352.CrossRefGoogle Scholar
  318. Young, R., & Thompson, G. (1999). Missing plant foods? Where is the archaeobotanical evidence for sorghum and finer millet in East Africa. In M. van der Veen (Ed.), The exploitation of plant resources in Ancient Africa (pp. 63–72). New York, NY: Kluwer Academic.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sarah Schrader
    • 1
  1. 1.Faculty of ArchaeologyLeiden UniversityLeidenThe Netherlands

Personalised recommendations