Bioarchaeological Approaches to Activity Reconstruction

  • Sarah Schrader
Part of the Bioarchaeology and Social Theory book series (BST)


How can activity reconstruction address day-to-day life in the past? What are its strengths? What are its drawbacks? One of the ways in which everyday action can be examined in the past is through the osteological examination of activity. There are several methods, including muscle attachment site and osteoarthritis analyses, which have the potential to speak to broad levels of physical activity. In this chapter, I discuss the osteological characteristics, etiology, previous bioarchaeological research, and ongoing bioarchaeological debates for both osteoarthritis and entheseal changes. Throughout the chapter I discuss how these data can illuminate everyday activities of the ancient past. It is important to note that these methods are not without drawbacks—several contributing factors, most notably of which is age, as well as an unclear progression of the conditions limit bioarchaeological interpretations of activity in the past. However, using statistical controls and robust samples sizes, bioarchaeologists can begin to overcome some of these obstacles. I also provide a case study of entheseal changes and osteoarthritis from the ancient Kerma culture (Nubia, 2500–1500 BCE). Here I compare entheseal changes and osteoarthritis for individuals of differing socioeconomic groups and conclude that this social category had a meaningful impact on the everyday lives of these individuals and these experiences were embodied by the people of Kerma.


Osteoarthritis Entheseal changes Musculoskeletal stress maker Occupation Nubia Kerma 


  1. Abramson, S. B., & Attur, M. (2009). Developments in the scientific understanding of osteoarthritis. Arthritis Research and Therapy, 11, 227–235.CrossRefGoogle Scholar
  2. Acosta, M. A., Henderson, C. Y., & Cunha, E. (2017). The effect of terrain on entheseal changes in the lower limbs. International Journal of Osteoarchaeology, 27(5), 828–838.CrossRefGoogle Scholar
  3. Aggrawal, N. D., Kaur, R., Kumar, S., & Mathur, D. N. (1979). A study of changes in the spine in weight lifters and other athletes. British Journal of Sports Medicine, 13, 58–61.CrossRefGoogle Scholar
  4. al-Oumaoui, I., Jimenez-Brobeil, S., & du Souich, P. (2004). Markers of activity patterns in some populations of the Iberian Peninsula. International Journal of Osteoarchaeology, 14(5), 343–359.CrossRefGoogle Scholar
  5. Alves Cardoso, F., & Henderson, C. Y. (2010). Enthesopathy formation in the humerus: Data from known age-at-death and known occupation skeletal collections. American Journal of Physical Anthropology, 141(4), 550–560.Google Scholar
  6. Anderson, J. A. D., Duthe, J. J. R., & Moody, B. P. (1962). Social and economic effects of rheumatic disease in a mining population. Annals of the Rheumatic Diseases, 21, 342–352.CrossRefGoogle Scholar
  7. Anderson, J. J., & Felson, D. T. (1988). Factors associated with osteoarthritis of the knee in the First National Health and Nutrition Examination Survey (HANES 1). Evidence for an association with overweight, race, and physical demands of work. American Journal of Epidemiology, 128(1), 179–189.CrossRefGoogle Scholar
  8. Angel, J. L. (1966). Early skeletons from Tranquility California. Washington, DC: Smithsonian Press.Google Scholar
  9. Angel, J. L., Kelley, J. O., Parrington, M., & Pinter, S. (1987). Life stresses of the free Black community as represented by the First African Baptist Church, Philadelphia, 1823-1841. American Journal of Physical Anthropology, 74(2), 213–229.CrossRefGoogle Scholar
  10. Armelagos, G. (1969). Disease in ancient Nubia. Science, 163(3864), 255–259.CrossRefGoogle Scholar
  11. Auerbach, B. M., & Ruff, C. B. (2004). Human body mass estimation: A comparison of “morphometric” and “mechanical” methods. American Journal of Physical Anthropology, 125(4), 331–342.CrossRefGoogle Scholar
  12. Aufderheide, A. C., & Rodríguez-Martín, C. (1998). The Cambridge encyclopedia of human paleopathology. Cambridge, UK: Cambridge University Press.Google Scholar
  13. Austin, A. (2017). The cost of a commute: A multidisciplinary approach to osteoarthritis in New Kingdom Egypt. International Journal of Osteoarchaeology, 27(4), 537–550.CrossRefGoogle Scholar
  14. Becker, S. K. (2012). Labor, gender, and identity: Bioarchaeological activity patterns in individuals from the Tiwanaku State (AD 500–1100). Paper presented at the 77th annual meeting of the Society for American Archaeology, Memphis, TN.Google Scholar
  15. Becker, S. K. (2013). Labor and the rise of the Tiwanaku State (AD 500–1100): A bioarchaeological study of activity patterns. Unpublished Ph.D. dissertation, University of North Carolina at Chapel Hill, Chapel Hill, NC.Google Scholar
  16. Becker, S. K. (2016). Skeletal evidence of craft production from the Ch’iji Jawira site in Tiwanaku, Bolivia. Journal of Archaeological Science, 9, 405–415.CrossRefGoogle Scholar
  17. Becker, S. K. (2017). Community labor and laboring communities within the Tiwanaku State (AD 500-1100). Archaeological Papers of the American Anthropological Association, 28(1), 38–53.CrossRefGoogle Scholar
  18. Becker, S. K., & Goldstein, P. S. (2018). Evidence of osteoarthritis in the Tiwanaku Colony, Moquegua, Peru (AD 500-1100). International Journal of Osteoarchaeology, 28(1), 54–64.CrossRefGoogle Scholar
  19. Benjamin, M., Evans, E. J., & Copp, L. (1986). The histology of tendon attachments to bone in man. Journal of Anatomy, 149, 89–100.Google Scholar
  20. Benjamin, M., Kumai, T., Milz, S., Boszczyk, A. A., & Ralphs, J. R. (2002). The skeletal attachment of tendons—Tendon ‘entheses’. Comparative Biochemistry and Physiology Part A, 133(4), 931–945.CrossRefGoogle Scholar
  21. Benjamin, M., & McGonagle, D. (2001). The anatomical basis for disease localization in seronegative spondyloarthropathy at entheses and related sites. Journal of Anatomy, 199(5), 503–526.CrossRefGoogle Scholar
  22. Benjamin, M., & McGonagle, D. (2009). The enthesis organ concept and its relevance to the spondyloarthropathies. In C. López-Larrea & R. Díaz-Peña (Eds.), Molecular mechanisms of spondyloarthropathies: Advances in experimental medicine and biology (Vol. 649, pp. 57–70). New York, NY: Springer.CrossRefGoogle Scholar
  23. Benjamin, M., Moriggl, B., Brenner, E., Emery, P., McGonagle, D., & Redman, S. (2004). The “enthesis organ” concept. Arthritis and Rheumatism, 50(110), 3306–3313.CrossRefGoogle Scholar
  24. Benjamin, M., & Ralphs, J. R. (1998). Fibrocartilage in tendons and ligaments—An adaptation to compressive load. Journal of Anatomy, 193(4), 481–494.CrossRefGoogle Scholar
  25. Benjamin, M., Toumi, H., Ralphs, J. R., Bydder, G., Best, T. M., & Milz, S. (2006). Where tendons and ligaments meet bone: Attachment sites (‘entheses’) in relation to exercise and/or mechanical load. Journal of Anatomy, 208(4), 471–490.CrossRefGoogle Scholar
  26. Bianchi, R. S. (2004). Daily life of the Nubians. Westport, CT: Greenwood Press.Google Scholar
  27. Bijlsma, J. W. J., Berenbaum, F., & Lafeber, F. P. J. G. (2011). Osteoarthritis: An update with relevance for clinical practice. The Lancet, 377(9783), 2115–2126.CrossRefGoogle Scholar
  28. Blagojevic, M., Jinks, C., Jeffery, A., & Jordan, K. P. (2010). Risk factors for onset of osteoarthritis of the knee in older adults: A systematic review and meta-analysis. Osteoarthritis and Cartilage, 18(1), 24–33.CrossRefGoogle Scholar
  29. Block, J. A., & Shakoor, N. (2010). Lower limb osteoarthritis: Biomechanical alterations and implications for therapy. Current Opinion in Rheumatology, 22(5), 544–550.CrossRefGoogle Scholar
  30. Bomer, N., den Hollander, W., Ramos, Y. F., Bos, S. D., van der Breggen, R., Lakenberg, N., Pepers, B. A., van Eeden, A. E., Darvishan, A., Tobi, E. W., Duijnisveld, B. J., van den Akker, E. B., Heijmans, B. T., van Roon-Mom, W. M., Verbeek, F. J., van Osch, G. J., Nelissen, R. G., Slagboom, P. M., & Meulenbelt, I. (2015). Underlying molecular mechanisms of DIO2 susceptibility in symptomatic osteoarthritis. Annals of the Rheumatic Diseases, 74(8), 1571–1579.CrossRefGoogle Scholar
  31. Bonnet, C. (1990). Kerma, royanne de Nubie. Geneva, Switzerland: Editions Tribune.Google Scholar
  32. Bonnet, C. (1992). Excavations at the Nubian royal town of Kerma: 1975-91. Antiquity, 66(252), 611–615.CrossRefGoogle Scholar
  33. Bonnet, C., & Valbelle, D. (2007). The Nubian Pharaohs: Black kings on the Nile. Cairo, Egypt: American University in Cairo Press.Google Scholar
  34. Booth, F. W., Chakravarthy, M. V., Gordon, S. E., & Spangenburg, E. E. (2002). Waging war on physical inactivity: Using modern molecular ammunition against an ancient enemy. Journal of Applied Physiology, 93(1), 3–30.CrossRefGoogle Scholar
  35. Borenstein, D. (2004). Does osteoarthritis of the lumbar spine cause chronic low back pain? Current Pain and Headache Reports, 8(6), 512–517.CrossRefGoogle Scholar
  36. Bouvard, B., Mabilleau, G., Legrand, E., Audran, M., & Chappard, D. (2012). Micro and macroarchitectural changes at the tibia after botulinium toxin injection in the growing rat. Bone, 50(4), 858–864.CrossRefGoogle Scholar
  37. Brandt, K. D., Dieppe, P., & Radin, E. L. (2009). Is it useful to subset ‘primary’ osteoarthritis? A critique based on evidence regarding etiopathogenesis of osteoarthritis. Seminars in Arthritis and Rheumatism, 39(2), 81–95.CrossRefGoogle Scholar
  38. Brandt, K. D., Fife, R. S., Braunsteinn, E. M., & Katz, B. (1991). Radiographic grading of the severity of knee osteoarthritis: Relation of the Kellgren and Lawrence grade to a grade based on joint space narrowing, and correlation with arthroscopic evidence of articular cartilage degeneration. Arthritis and Rheumatism, 34(11), 1381–1386.CrossRefGoogle Scholar
  39. Bridges, P. S. (1990). Osteological correlates of weapon use. In J. E. Buikstra (Ed.), A life in science: Papers in Honor of J Lawrence Angel (pp. 87–98). Kampsville, IL: Center for American Archaeology Press.Google Scholar
  40. Bridges, P. S. (1991). Degenerative joint disease in hunter-gatherers and agriculturalists from the Southeastern United States. American Journal of Physical Anthropology, 85(4), 379–391.CrossRefGoogle Scholar
  41. Bridges, P. S. (1992). Prehistoric arthritis in the Americas. Annual Review of Anthropology, 21, 67–91.CrossRefGoogle Scholar
  42. Bridges, P. (1994). Vertebral arthritis and physical activities in the prehistoric southeastern United States. American Journal of Physical Anthropology, 93, 83–93.CrossRefGoogle Scholar
  43. Britz, H. M., Jokihaara, J., Leppänen, O. V., Järvinen, T. L. N., & Cooper, D. M. L. (2012). The effects of immobilization on vascular canal orientation in rat cortical bone. Journal of Anatomy, 220(1), 67–76.CrossRefGoogle Scholar
  44. Brodelius, A. (1961). Osteoarthritis of the talar joints in footballers and ballet dancers. Acta Orthopaedica, 30(1–4), 309–314.CrossRefGoogle Scholar
  45. Buckwalter, J. A., & Lappin, D. R. (2000). The disproportionate impact of chronic arthralgia and arthritis among women. Clinical Orthopaedics and Related Research, 372, 159–168.CrossRefGoogle Scholar
  46. Buikstra, J., & Ubelaker, D. (1994). Standards for data collection from human skeletal remains. Proceedings of a seminar at the Field Museum of Natural History (Arkansas Archaeological Survey Research Series No.44). Fayetteville, AR: Arkansas Archaeological Survey Research.Google Scholar
  47. Burke, K. L. (2012). Schmorl’s nodes in an American military population: Frequency, formation, and etiology. Journal of Forensic Sciences, 57(3), 571–577.CrossRefGoogle Scholar
  48. Burt, N. M., Semple, D., Waterhouse, K., & Lovell, N. C. (2013). Identification and interpretation of joint disease in paleopathology and forensic anthropology. Springfield, IL: Charles C. Thomas.Google Scholar
  49. Busija, L., Bridgett, L., Williams, S. R. M., Osborne, R. H., Buchbinder, R., March, L., & Fransen, M. (2010). Osteoarthritis. Best Practices & Research: Clinical Rheumatology, 24(6), 757–768.CrossRefGoogle Scholar
  50. Buzon, M. R., & Judd, M. A. (2008). Investigating health at Kerma: Sacrificial versus nonsacraficial individuals. American Journal of Physical Anthropology, 136(1), 93–99.CrossRefGoogle Scholar
  51. Calce, S. E., Kurki, H. K., Weston, D. A., & Gould, L. (2016). Principal component analysis in the evaluation of osteoarthritis. American Journal of Physical Anthropology, 162(3), 476–490.CrossRefGoogle Scholar
  52. Campanacho, V., & Santos, A. L. (2013). Comparison of the entheseal changes of the os coxae of Portuguese males (19th–20th centuries) with known occupation. International Journal of Osteoarchaeology, 23(2), 229–236.CrossRefGoogle Scholar
  53. Canoso, J. J. (1998). The première enthesis. Journal of Rheumatology, 25(7), 1254–1256.Google Scholar
  54. Cashmore, L. A., & Zakrzewski, S. R. (2013). Assessment of musculoskeletal stress marker development in the hand. International Journal of Osteoarchaeology, 23(3), 334–347.CrossRefGoogle Scholar
  55. Chantraine, A. (1985). Knee joint in soccer players: Osteoarthritis and axis deviation. Medicine and Science in Sports and Exercise, 17(4), 434–439.CrossRefGoogle Scholar
  56. Chapman, K. (1999). Osteoarthritis-susceptibility locus on chromosome 11q, detected by linkage. American Journal of Human Genetics, 65(1), 167–174.CrossRefGoogle Scholar
  57. Cheverko, C. M., & Bartelink, E. J. (2017). Resource intensification and osteoarthritis patterns: Changes in activity in the prehistoric Sacramento-San Joaquin Delta region. American Journal of Physical Anthropology, 164(2), 331–342.CrossRefGoogle Scholar
  58. Cheverko, C. M., & Hubbe, M. (2017). Comparisons of statistical techniques to assess age-related skeletal markers in bioarchaeology. American Journal of Physical Anthropology, 163(2), 407–416.CrossRefGoogle Scholar
  59. Cholewicki, J., & McGill, S. (1996). Mechanical stability of the in vivo lumbar spine: Implications for injury and chronic low back pain. Clinical biomechanics, 11(1), 1–15.CrossRefGoogle Scholar
  60. Chosa, E., Totoribe, K., & Tajima, N. (2004). A biomechanical study of lumbar spondylolysis based on three-dimensional finite element method. Journal of Orthopaedic Research, 22(1), 158–163.CrossRefGoogle Scholar
  61. Churchill, S. E., & Morris, A. G. (1998). Muscle marking morphology and labour intensity in prehistoric Khoisan foragers. International Journal of Osteoarchaeology, 8(5), 390–411.CrossRefGoogle Scholar
  62. Cicuttini, F. M., & Spector, T. D. (1997). What is the evidence that osteoarthritis is genetically determined? Bailliere’s Clinical Rheumatology, 11(4), 657–669.CrossRefGoogle Scholar
  63. Claudepierre, P., & Voisin, M. C. (2005). The entheses: Histology, pathology, and pathophysiology. Joint, Bone, Spine, 72(1), 32–37.CrossRefGoogle Scholar
  64. Coggon, D., Kellingray, S., Inskip, H., Croft, P., Campbell, L., & Cooper, C. (1998). Osteoarthritis of the hip and occupational lifting. American Journal of Epidemiology, 147(6), 523–528.CrossRefGoogle Scholar
  65. Croft, P., Coggon, D., Cruddas, M., & Cooper, C. (1992). Osteoarthritis of the hip: An occupational disease in farmers. British Medical Journal, 304, 1269–1272.CrossRefGoogle Scholar
  66. Cross, M., Smith, E., Hoy, D., Nolte, S., Ackerman, I., Fransen, M., Bridgett, L., Williams, S., Guillemin, F., Hill, C. L., Laslett, L. L., Jones, G., Cicuttini, F., Osborne, R. H., Vos, T., Buchbinder, R., Woolf, A., & Lyn, M. (2014). The global burden of hip and knee osteoarthritis: Estimates from the Global Burden of Disease 2010 study. Annals of the Rheumatic Diseases, 73(7), 1323–1330.CrossRefGoogle Scholar
  67. Cunha, E., & Umbelino, C. (1995). What can bones tell about labour and occupation: The analysis of skeletal markers of occupational stress in the Identified Skeletal Collection of the Anthropological Museum of the University of Coimbra (preliminary results). Antropologia Portuguesa, 13, 49–68.Google Scholar
  68. Dar, G., Masharawi, Y., Peleg, S., Steinberg, N., May, H., Medlej, B., Peled, N., & Hershkovits, I. (2010). Schmorl’s nodes distribution in the human spine and its possible etiology. European Spine Journal, 19(4), 670–675.CrossRefGoogle Scholar
  69. Davidson, J. M., Rose, J. C., Gutmann, M. P., Haines, M. R., Condon, K., & Condon, C. (2002). The quality of African-American life in the Old Southwest near the turn of the Twentieth Century. In R. H. Steckel & J. C. Rose (Eds.), The backbone of bistory: Health and nutrition in the Western Hemisphere (pp. 226–277). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  70. Davis, C. B., Shuler, K. A., Danforth, M. E., & Hendon, K. E. (2013). Patterns of interobserver error in the scoring of entheseal changes. International Journal of Osteoarchaeology, 23(2), 147–151.CrossRefGoogle Scholar
  71. de Miguel, E., Muñoz-Fernández, S., Castillo, C., Cobo-Ibnáñez, T., & Martín-Mola, E. (2011). Diagnostic accuracy of enthesis ulntrasound in the diagnosis of early spondyloarthritis. Annals of the Rheumatic Diseases, 70(3), 434–439.CrossRefGoogle Scholar
  72. Denko, C. W. (1993). Osteoarthritis. In K. F. Kiple (Ed.), The Cambridge world history of human disease (pp. 906–909). Cambridge, UK: University of Cambridge.CrossRefGoogle Scholar
  73. Dieppe, P. A., & Lohmander, L. S. (2005). Pathogenesis and management of pain in osteoarthritis. The Lancet, 365(9463), 965–973.CrossRefGoogle Scholar
  74. DiFiori, J. P., Benjamin, H. J., Brenner, J. S., Gregory, A., Jayanthi, N., Landry, G. L., & Luke, A. (2014). Overuse injuries and burnout in youth sports: A position statement from the American Medical Society for Sports Medicine. British Journal of Sports Medicine, 48(4), 287–288.CrossRefGoogle Scholar
  75. Ding, M., Odgaard, A., Danielsen, C. C., & Hvid, I. (2002). Mutual association among microstructural, physical and mechanical properties of human cancellous bone. Journal of Bone and Joint Surgery, 84(6), 900–907.CrossRefGoogle Scholar
  76. Djukic, K., Milovanovic, P., Hahn, M., Busse, B., Amling, M., & Djuric, M. (2015). Bone microarchitecture at muscle attachment sites: The relationship between macroscopic scores of entheses and their cortical and trabecular microstructural design. American Journal of Physical Anthropology, 157(1), 81–93.CrossRefGoogle Scholar
  77. Djuric, M., Djonic, D., Milovanovic, P., Nikolic, S., Marshall, R., Marinkovic, J., & Hahn, M. (2010). Region-specific sex-dependent pattern of age-related changes of proximal femoral cancellous bone and its implications on differential bone fragility. Calcified Tissue International, 86(3), 192–201.CrossRefGoogle Scholar
  78. Domett, K., Evans, C., Chang, N., Tayles, N., & Newton, J. (2017). Interpreting osteoarthritis in bioarchaeology: Highlighting the importance of a clinical approach through case studies from prehistoric Thailand. Journal of Archaeological Science: Reports, 11, 762–773.CrossRefGoogle Scholar
  79. Drapeau, M. S. M. (2008). Enthesis bilateral asymmetry in humans and African apes. Journal of Comparative Human Biology, 59(2), 93–109.CrossRefGoogle Scholar
  80. Dutour, O. (1986). Enthesopathies (lesions of muscular insertions) as indicators of the activities of Neolithic Saharan Populations. American Journal of Physical Anthropology, 71(2), 221–224.CrossRefGoogle Scholar
  81. Eaton, S. B., Konner, M., & Shostak, M. (1988). Stone agers in the fast lane: Chronic degenerative diseases in evolutionary perspective. The American Journal of Medicine, 84(4), 739–749.CrossRefGoogle Scholar
  82. Eckstein, F., Burstein, D., & Link, T. M. (2006). Quantitative MRI of cartilage and bone: Degenerative changes in osteoarthritis. NMR in Biomedicine, 19(7), 822–854.CrossRefGoogle Scholar
  83. Edwards, D. N. (2004). Nubian past: An archaeology of the Sudan. New York, NY: Routledge.CrossRefGoogle Scholar
  84. Eng, J. T. (2007). Nomadic pastoralists and the Chinese empire: A bioarchaeological study of China’s northern frontier. Unpublished Ph.D. dissertation, University of California, Santa Barbara, CA.Google Scholar
  85. Eng, J. T. (2016). A bioarchaeological study of osteoarthritis among populations of northern China and Mongolia during the Bronze Age to Iron Age transition to nomadic pastoralism. Quaternary International, 405(B), 172–185.CrossRefGoogle Scholar
  86. Eshed, V., Gopher, A., Galili, E., & Hershkovitz, I. (2004). Musculoskeletal stress markers in Natufian hunter-gatherers and Neolithic farmers in the Levant: The upper limb. American Journal of Physical Anthropology, 123(4), 303–315.CrossRefGoogle Scholar
  87. Faccia, K. J., Waters-Rist, A. L., Lieverse, A. R., Bazaliiski, V. I., Stock, J. T., & Katzenberg, M. A. (2016). Diffuse idiopathic skeletal hyperostosis (DISH) in a middle Holocene forager from Lake Baikal, Russia: Potential causes and the effect on quality of life. Quaternary International, 405(B), 66–79.CrossRefGoogle Scholar
  88. Faccia, K. J., & Williams, R. C. (2008). Schmorl’s nodes: Clinical significance and implications for the bioarchaeological record. International Journal of Osteoarchaeology, 18(1), 28–44.CrossRefGoogle Scholar
  89. Felson, D. T. (1994). Do occupation-related physical factors contribute to arthritis? Bailliere’s Clinical Rheumatology, 8(1), 63–77.CrossRefGoogle Scholar
  90. Felson, D. T. (2000). Osteoarthritis: The disease and its prevalence and impact. Annals of Internal Medicine, 133(8), 635–636.CrossRefGoogle Scholar
  91. Felson, D. T., Anderson, J. J., Nainmark, A., Walker, A. M., & Meenan, R. F. (1988). Obesity and knee osteoarthritis. The Framingham study. Annals of Internal Medicine, 109(1), 18–24.CrossRefGoogle Scholar
  92. Felson, D. T., Hannan, M. T., Naimark, A., Berkeley, J., Gordon, G., Wilson, P. W., & Anderson, J. A. D. (1991). Occupational physical demands, knee bending, and knee osteoarthritis: Results from the Framingham study. Journal of Rheumatology, 18(10), 1587–1592.Google Scholar
  93. Felson, D. T., Lawrence, R. C., Dieppe, P. A., Hirsch, R., Helmick, C. G., Jordan, J. M., Kington, R. S., Lane, N. E., Nevitt, M. C., Zhang, Y., Sowers, M., McAlindon, T., Spector, T. D., Poole, A. R., Yanovski, S. Z., Ateshian, G., Sharma, L., Buckwalter, J. A., Brandt, K. D., & Fries, J. F. (2000). Osteoarthritis: New insights. Annals of Internal Medicine, 133, 635–646.CrossRefGoogle Scholar
  94. Felson, D. T., & Zhang, Y. (1998). An update on the epidemiology of knee and hip osteoarthritis with a view to prevention. Arthritis and Rheumatism, 41(8), 1343–1355.CrossRefGoogle Scholar
  95. Feuerriegel, E. M. (2016). Biomechanics of the hominin upper limb: Entheseal development and stone tool manufacture. Unpublished Ph.D. dissertation, The Australian National University, Canberra, Australia.Google Scholar
  96. Foster, A., Buckley, H., Tayles, N., Spriggs, M., & Bedford, S. (2013). Gender, labour division and the skeleton: A case study from the Teouma Lapita cemetery. Pacific Archaeology: Documenting the Past, 50, 76–90.Google Scholar
  97. Gao, J., Rasanen, T., Persliden, J., & Messner, K. (1996). The morphology of ligament insertions after failure at low strain velocity: An evaluation of ligament entheses in the rabbit knee. Journal of Anatomy, 189(1), 127–133.Google Scholar
  98. Gellhorn, A. C., Katz, J. N., & Suri, P. (2013). Osteoarthritis of the spine: The facet joints. Nature Reviews Rheumatology, 9, 216–224.CrossRefGoogle Scholar
  99. Giai Via, A., de Cupis, M., Spoliti, M., & Oliva, F. (2013). Clinical and biological aspects of rotator cuff tears. Muscles. Ligaments and Tendons Journal, 3(2), 70–79.Google Scholar
  100. Glyn-Jones, S., Palmer, A. J. R., Agricola, R., Price, A. J., Vincent, T. L., Weinans, H., & Carr, A. J. (2015). Osteoarthritis. Lancet, 386(9991), 376–387.CrossRefGoogle Scholar
  101. Gonzales, A. (2013). Osteoarthritis year 2013 in review: Genetics and genomics. Osteoarthritis and Cartilage, 21(1), 1443–1451.CrossRefGoogle Scholar
  102. Gosman, J. H., Stout, S. D., & Larsen, C. S. (2011). Skeletal biology over the life span: A view from the surfaces. Yearbook of Physical Anthropology, 146(53), 86–98.CrossRefGoogle Scholar
  103. Gossec, L., Jordan, J. M., Lam, M. A., Fang, F., Renner, J. B., Davis, A., Hawker, G. A., Dougados, M., & Maillefert, J. F. (2009). Comparative evaluation of three semi-quantitative radiographic grading techniques for hip osteoarthritis in terms of validity and reproducibility in 1404 radiographs: Report of the OARSI-OMERACT Task Force. Osteoarthritis and Cartilage, 17(2), 182–187.CrossRefGoogle Scholar
  104. Gossec, L., Jordan, J. M., Mazzuca, S. A., Lam, M. A., Suarez-Almazor, M. E., Renner, J. B., Lopez-Olivo, M. A., Hawker, G. A., Dougados, M., & Maillefert, J. F. (2008). Comparative evaluation of three semi-quantitative radiographic grading techniques for knee osteoarthritis in terms of validity and reproducibility in 1759 X-rays: Report of the OARSI-OMERACT task force. Osteoarthritis and Cartilage, 16(7), 54–62.CrossRefGoogle Scholar
  105. Gouttebarge, V., Inklaar, H., Backx, F., & Kerkoffs, G. (2015). Prevalence of osteoarthritis in former elite athletes: A systematic overview of the recent literature. Rheumatology International, 35(3), 405–418.CrossRefGoogle Scholar
  106. Gresky, J., Wagner, M., Schmidt-Schultz, T. H., Schwarcz, L., Wu, X., Aisha, A., Tarasov, P. E., & Schultz, M. (2016). You must keep going’—Musculoskeletal system stress indicators of prehistoric mobile pastoralists in Western China. Quaternary International, 405, 186–199.CrossRefGoogle Scholar
  107. Grotle, M., Hagen, K. B., Natvig, B., Dahl, F. A., & Kvien, T. K. (2008). Obesity and osteoarthritis in knee, hip and/or hand: An epidemiological study in the general population with 10 years follow-up. BMC Musculoskeletal Disorders, 9, 132.CrossRefGoogle Scholar
  108. Hadler, N. M., Gillings, D. B., Imbus, H. R., Levitin, P. M., Makuc, D., Utsinger, P. D., Yount, W. J., Slusser, D., & Moskovitz, N. (1978). Hand structure and function in an industrial setting. Arthritis and Rheumatism, 21(2), 210–220.CrossRefGoogle Scholar
  109. Hagihara, Y., Nara, T., & Suzuki, T. (2015). Severe erosive polyarthritis in a human skeleton dated to the early modern period of Japan. International Journal of Paleopathology, 8, 10–18.CrossRefGoogle Scholar
  110. Hame, S. L., & Alexander, R. A. (2013). Knee osteoarthritis in women. Current Reviews in Musculoskeletal Medicine, 6(2), 182–187.CrossRefGoogle Scholar
  111. Hanna, F. S., Wluka, A. E., Bell, R. J., Davis, S. R., & Cicuttini, F. M. (2004). Osteoarthritis and the postmenopausal woman: Epidemiological, magnetic resonance imaging, and radiological findings. Seminars in Arthritis and Rheumatism, 31(3), 631–636.CrossRefGoogle Scholar
  112. Hansen, N. M. (1982). Epiphyseal changes in the proximal humerus of an adolescent baseball pitcher. The American Journal of Sports Medicine, 10(6), 380–384.CrossRefGoogle Scholar
  113. Hardcastle, S. A., Dieppe, P., Gregson, C. L., Arden, N. K., Spector, T. D., Hart, D. J., Edwards, M. H., Dennison, E. M., Cooper, C., Sayers, A., Williams, M., Davey Smith, G., & Tobias, J. H. (2015). Individuals with high bone mass have an increased prevalence of radiographic knee osteoarthritis. Bone, 71, 171–179.CrossRefGoogle Scholar
  114. Hardcastle, S. A., Dieppe, P., Gregson, C. L., Arden, N. K., Spector, T. D., Hart, D. J., Edwards, M. H., Dennison, E. M., Cooper, C., Williams, M., Davey Smith, G., & Tobias, J. H. (2014). Osteophytes, enthesophytes, and high bone mass. A bone forming triad with potential relevance in osteoarthritis. Arthritis & Rheumatology, 66(9), 2429–2439.CrossRefGoogle Scholar
  115. Hart, D. J., Doyle, D. V., & Spector, T. D. (1999). Incidence and risk factors for radiographic knee osteoarthritis in middle-aged women: The Chingford study. Arthritis and Rheumatism, 42(1), 17–24.CrossRefGoogle Scholar
  116. Havelková, P., Hladík, M., & Velemínksy, P. (2013). Entheseal changes: Do they reflect socioeconomic status in the Early Medieval Central European population? International Journal of Osteoarchaeology, 23(2), 237–251.CrossRefGoogle Scholar
  117. Havelková, P., Villotte, S., Velemínsky, P., Poláček, L., & Dobisíkova, M. (2011). Enthesopathies and activity patterns in the Early Medieval Great Moravian population: Evidence of division of labour. International Journal of Osteoarchaeology, 21(4), 487–504.CrossRefGoogle Scholar
  118. Hawkey, D. E. (1998). Disability, compassion and the skeletal record: Using musculoskeletal stress markers (MSM) to construct an osteobiography from Early New Mexico. International Journal of Osteoarchaeology, 8(5), 326–340.CrossRefGoogle Scholar
  119. Hawkey, D. E., & Merbs, C. F. (1995). Activity-induced muscoskeletal stress markers (MSM) and subsistence strategy changes among Ancient Hudson Bay Eskimos. International Journal of Osteoarchaeology, 5(4), 324–338.CrossRefGoogle Scholar
  120. Hawkey, D. E., & Street, S. R. (1992). Activity-induced stress markers in prehistoric human remains from the Eastern Aleutian Islands (abstract). American Journal of Physical Anthropology, Supplement 14, 89.Google Scholar
  121. Hayes, C. W., Jamadar, D. A., Welch, G. W., Jannausch, M. L., Lachance, L. L., Capul, D. C., & Sowers, M. R. (2005). Osteoarthritis of the knee: Comparison of MR imaging findings with radiographic severity measurements and pain in middle-aged women. Radiology, 237(3), 998–1007.CrossRefGoogle Scholar
  122. Hemphill, B. E. (1999). Wear and tear: Osteoarthritis as an indicator of mobility among the Great Basin hunter-gatherers. In B. E. Hemphill & C. S. Larsen (Eds.), Prehistoric lifeways in the Great Basin wetlands: Bioarchaeological reconstruction and interpretation (pp. 241–289). Salt Lake City, UT: University of Utah Press.Google Scholar
  123. Hemphill, B. E. (2010). Wear and tear: Osteoarthritis as an indicator of mobility among Great Basin hunter-gatherers. In B. E. Hemphill & C. S. Larsen (Eds.), Understanding prehistoric, lifeways in the Great Basin Wetlands: Bioarchaeological reconstruction and interpretation (pp. 241–289). Salt Lake City, UT: University of Utah Press.Google Scholar
  124. Henderson, C. Y. (2013). Do diseases cause entheseal changes at fibrous entheses? International Journal of Paleopathology, 3(1), 64–69.CrossRefGoogle Scholar
  125. Henderson, C. Y. (2018). 3D recording of normal entheses: A pilot study. Trends in Biological Anthropology, 2, 58–68.Google Scholar
  126. Henderson, C., Mariotti, V., Pany-Kucera, D., Perreard-Lopreno, G., Villotte, S., & Wilczak, C. (2010). Scoring entheseal changes: Proposal of a new standardized method for fibrocartilaginous entheses. Poster presented at the 18th annual European meeting of the Paleopathology Association, Vienna, Austria.Google Scholar
  127. Henderson, C. Y., Mariotti, V., Pany-Kucera, D., Perréard-Lopreno, G., Villotte, S., & Wilczak, C. A. (2012). The effect of age on entheseal changes at some fibrocartilaginous entheses. American Journal of Physical Anthropology, 147(S54), 163.Google Scholar
  128. Henderson, C. Y., Mariotti, V., Pany-Kucera, D., Villotte, S., & Wilczak, C. A. (2013). Recording specific entheseal changes of fibrocartilaginous entheses: Initial tests using the Coimbra Method. International Journal of Osteoarchaeology, 23(2), 152–162.CrossRefGoogle Scholar
  129. Henderson, C. Y., & Nikita, E. (2016). Accounting for multiple effects and the problem of small sample sizes in osteology: A case study focusing on entheseal changes. Archaeological and Anthropological Sciences, 8(4), 805–817.CrossRefGoogle Scholar
  130. Hert, J. (1994). A new attempt at the interpretation of the functional architecture of the cancellous bone. Journal of Biomechanics, 27(2), 239–242.CrossRefGoogle Scholar
  131. Hochberg, M. C. (2001). Osteoarthritis. In A. J. Silman & M. C. Hochberg (Eds.), Epidemiology of the rheumatic diseases. New York, NY: Oxford University Press.Google Scholar
  132. Hollimon, S. E. (1988). Age and sex related incidence of degenerative joint disease in skeletal remains from Santa Cruz Island, California. In G. Richards (Ed.), Human skeletal biology: Contributions to the understanding of California’s prehistoric populations (pp. 69–90). Salinas, CA: Coyote Press.Google Scholar
  133. Holliman, S. E. (1992). Health consequences of sexual division of labor among Native Americans: The Chumash of California and the Arikara of the Northern Plains. In C. Claassen (Ed.), Exploring gender through archaeology: Selected papers from 1991 Boone conference (pp. 81–88). Madison, MI: Prehistory Press.Google Scholar
  134. Holt, B. M. (2003). Mobility in Upper Paleolithic and Mesolithic Europe: Evidence from the lower limb. American Journal of Physical Anthropology, 122(3), 200–215.CrossRefGoogle Scholar
  135. Hu, S. S., Tribus, C. B., Diab, M., & Ghanayem, J. (2008). Spondylolisthesis and sponylolysis. Journal of Bone and Joint Surgery, 90(3), 656–671.Google Scholar
  136. Hunter, D. J., March, L., & Sambrook, P. N. (2002). Knee osteoarthritis: The influence of environmental factors. Clinical and Experimental Rheumatology, 20, 93–100.Google Scholar
  137. Ibáñez-Gimeno, P., Galtés, I., Jordana, X., Fiorin, E., Manyosa, J., & Malgosa, A. (2013). Entheseal changes and functional implications of the humeral medial epicondyle. International Journal of Osteoarchaeology, 23(2), 211–220.CrossRefGoogle Scholar
  138. Iwamoto, J., Takeda, T., & Wakano, K. (2004). Returning athletes with severe low back pain and spondylolysis to original sporting activities with conservative treatment. Scandinavian Journal of Medicine and Science in Sports, 14(6), 346–351.CrossRefGoogle Scholar
  139. Jankauskas, R. (2003). The incidence of diffuse idiopathic skeletal hyperostosis and social status correlations in Lithuanian skeletal materials. International Journal of Osteoarchaeology, 13(5), 289–293.CrossRefGoogle Scholar
  140. Jiang, L., Tian, W., Jiesheng, R., Bao, C., Liu, Y., Zhao, Y., & Wang, C. (2012). Body mass index and susceptibility to knee osteoarthritis: A systematic review and meta-analysis. Joint, Bone, Spine, 79(3), 291–297.CrossRefGoogle Scholar
  141. Johnson, V. L., & Hunter, D. J. (2014). The epidemiology of osteoarthritis. Best Practice & Research: Clinical Rheumatology, 28(1), 5–15.CrossRefGoogle Scholar
  142. Jones, G., Glisson, M., Hynes, K., & Cicuttini, F. (2000). Sex and site differences in cartilage development: A possible explanation for variations in knee osteoarthritis in later life. Arthritis and Rheumatism, 43(11), 2543–2549.CrossRefGoogle Scholar
  143. Judd, M., & Irish, J. (2009). Dying to serve: The mass burials at Kerma. Antiquity, 83(321), 709–722.CrossRefGoogle Scholar
  144. Jurmain, R. D. (1977). Stress and etiology of osteoarthritis. American Journal of Physical Anthropology, 46(2), 353–366.CrossRefGoogle Scholar
  145. Jurmain, R. D. (1990). Paleoepidemiology of a central California prehistoric population from Ca-Ala-329: II. Degenerative disease. American Journal of Physical Anthropology, 83(1), 83–94.CrossRefGoogle Scholar
  146. Jurmain, R. D. (1999). Stories from the skeleton: Behavioral reconstruction in human osteology. Amsterdam, The Netherlands: Gordon and Breach.Google Scholar
  147. Jurmain, R. D., Cardoso, F. A., Henderson, C., & Villotte, S. (2012). Bioarchaeology’s Holy Grail: The reconstruction of activity. In A. L. Grauer (Ed.), A companion to paleopathology (pp. 531–552). Oxford, UK: Wiley-Blackwell.CrossRefGoogle Scholar
  148. Jurmain, R. D., & Kilgore, L. (1995). Skeletal evidence of osteoarthritis: A paleopathological perspective. Annals of the Rheumatic Diseases, 54(6), 443–450.CrossRefGoogle Scholar
  149. Jurmain, R., & Roberts, C. (2008). Juggling the evidence: The purported ‘acrobat’ from Tell Brak. Antiquity, 82(318), 320–321.Google Scholar
  150. Jurmain, R. D., & Villotte, S. (2010). Terminology—Entheses in medical literature and physical anthropology: A brief review. Workshop in Musculoskeletal Stress Markers (MSM): Limitations and Achievements in the Reconstruction of Past Activity Patterns. Retrieved from
  151. Kalichman, L., Malkin, I., & Kobyliansky, E. (2007). Hand bone midshaft enthesophytes: The influence of age, sex and heritability. Osteoarthritis and Cartilage, 15(10), 1113–1119.CrossRefGoogle Scholar
  152. Karakostis, F. A., Hotz, G., Scherf, H., Wahl, J., & Harvati, K. (2017). Occupational manual activity is reflected on the patterns among hand entheses. American Journal of Physical Anthropology, 164(1), 30–40.CrossRefGoogle Scholar
  153. Karakostis, F. A., Hotz, G., Scherf, H., Wahl, J., & Harvati, K. (2018). A repeatable geometric morphometric approach to the analysis of hand entheseal three-dimensional form. American Journal of Physical Anthropology, 166(1), 246–260.CrossRefGoogle Scholar
  154. Karakostis, F. A., & Lorenzo, C. (2016). Morphometric patterns among the 3D surface areas of human hand entheses. American Journal of Physical Anthropology, 160(4), 694–707.CrossRefGoogle Scholar
  155. Kellgren, J. H., & Lawrence, J. S. (1952). Rheumatism in miners part II: X-Ray study. British Journal of Industrial Medicine, 9(3), 197–207.Google Scholar
  156. Kellgren, J. H., & Lawrence, J. S. (1963). Atlas of standard radiographs : The epidemiology of chronic rheumatism. Oxford, UK: Blackwell Scientific.Google Scholar
  157. Kelley, M. A. (1982). Intervertebral osteochondrosis in ancient and modern populations. American Journal of Physical Anthropology, 59(3), 271–279.CrossRefGoogle Scholar
  158. Kendall, T. (1996). Kerma and the Kingdom of Kush 2500–1500 BC. Washington, DC: National Museum of African Art.Google Scholar
  159. Kennedy, K. A. R. (1989). Skeletal markers of occupational stress. In M. Y. Iscan & K. A. R. Kennedy (Eds.), Reconstruction of life from the Skeleton (pp. 129–160). New York, NY: Alan R. Liss.Google Scholar
  160. Kennedy, K. A. R. (1998). Markers of occupational stress: Conspectus and prognosis of research. International Journal of Osteoarchaeology, 8(5), 305–310.CrossRefGoogle Scholar
  161. Kerkhof, H. J. M., Lories, R. J., Meulenbelt, I., Jonsdottir, I., Valdes, A. M., Arp, P., Ingvarsson, T., Hjamai, M., Jonsson, H., Stolk, L., Thorleifsson, G., Zhai, G., Zhang, F., Zhu, Y., van der Breggen, R., Carr, A., Doherty, M., Doherty, S., Felson, D. T., Gonzales, A., Halldorsson, B. V., Hart, D. J., Bauksson, V. B., Hofman, A., Ioannidis, J. P. A., Kloppenburg, M., Lane, N. E., Loughlin, J., Luyten, F. P., Nevitt, M. C., Parimi, N., Pols, H. A. P., Rivadeneira, F., Slagboom, E. P., Styrkársdóttir, U., Tsezou, A., van de Putte, T., Zmuda, J., Spector, T. D., Stefansson, K., Uitterlinden, A. G., & van Meurs, J. B. (2010). A genome-wide association study identifies n osteoarthritis susceptibility locus on chromosome 7q22. Arthritis & Rheumatism, 62, 499–510.Google Scholar
  162. King, L. K., March, L., & Anandacoomarasamy, A. (2013). Obesity & osteoarthritis. Indian Journal of Medical Research, 138(2), 185–193.Google Scholar
  163. Klaus, H., Larsen, C. S., & Tam, M. E. (2009). Economic intensification and degenerative joint disease: Life and labor on the postcontact North Coast of Peru. American Journal of Physical Anthropology, 139(2), 204–221.CrossRefGoogle Scholar
  164. Kyriakou, P. (2009). Incipient DISH and Musculoskeletal Stress Markers: Diagnosis and Problems of Interpretation in the Lower Limb. Paper presented at the Workshop in Musculoskeletal Stress Markers, Coimbra, Portugal.Google Scholar
  165. Lai, P., & Lovell, N. C. (1992). Skeletal markers of occupational stress in the fur trade: A case study from a Hudson’s Bay Company fur trade post. International Journal of Osteoarchaeology, 2(3), 221–234.CrossRefGoogle Scholar
  166. Larsen, C. S. (1995). Biological changes in human populations with agriculture. Annual Review of Anthropology, 24, 185–213.CrossRefGoogle Scholar
  167. Larsen, C. S. (2015). Bioarchaeology: Interpreting behavior from the human skeleton (2nd ed.). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  168. Larsen, C. S., Kelly, R. L., Ruff, C. B., Schoeninger, M. J., Hutchinson, D. L., & Hemphill, B. E. (2008). Living on the margins: Biobehavioral adaptations in the Western Great Basin. In E. J. Reitz, S. J. Scudder, & C. M. Scarry (Eds.), Case studies in environmental archaeology (pp. 161–189). New York, NY: Springer.CrossRefGoogle Scholar
  169. Larsen, C. S., Ruff, C. B., & Kelly, R. L. (1995). Structural analysis of the Stillwater postcranial human remains: Behavioral implications of articular joint pathology and long bone diaphyseal morphology. In C. S. Larsen & R. L. Kelly (Eds.), Bioarchaeology of the Stillwater marsh: Prehistoric human adaptation in the Western Great Basin (pp. 107–133). New York, NY: American Museum of Natural History.Google Scholar
  170. Lawrence, J. S. (1955). Rheumatism in coal miners Part III: Occupational factors. British Journal of Industrial Medicine, 12(3), 249–261.Google Scholar
  171. Lawrence, R. C., Felson, D. T., Helmick, C. G., Arnold, L. M., Choi, H., Deyo, R. A., Gabriel, S., Hirsch, R., Hochberg, M. C., Hunder, G. G., Jordan, J. M., Katz, J. N., Kremers, H. M., & Wolfe, F. (2008). Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part 2. Arthritis and Rheumatism, 58(1), 26–35.CrossRefGoogle Scholar
  172. Lementowski, P. W., & Zelicof, S. B. (2008). Obesity and osteoarthritis. American Journal of Orthopedics, 37(3), 148–151.Google Scholar
  173. Lieverse, A. R., Bazaliiskii, V. I., Goriunova, O. I., & Weber, A. W. (2009). Upper Limb Musculoskeletal stress markers among Middle Holocene foragers of Siberia’s Cis-Baikal region. American Journal of Physical Anthropology, 138(4), 458–472.CrossRefGoogle Scholar
  174. Lieverse, A. R., Bazaliiskii, V. I., Goriunova, O. I., & Weber, A. W. (2013). Lower limb activity in the Cis-Baikal: Entheseal changes among middle Holocene Siberian foragers. American Journal of Physical Anthropology, 150(3), 421–432.CrossRefGoogle Scholar
  175. Lieverse, A. R., Mack, B., Bazaliiskii, V. I., & Weber, A. W. (2016). Revisiting osteoarthritis in the Cis-Baikal: Understanding behavioral variability and adaptation among middle Holocene foragers. Quaternary Research, 405(16), 160–171.Google Scholar
  176. Lieverse, A. R., Weber, A. W., Bazaliiskiy, V. I., Goriunova, O. I., & Savel’ev, N. A. (2007). Osteoarthritis in Siberia’s Cis-Baikal: Skeletal indicators of hunter-gatherer adaptation and cultural change. American Journal of Physical Anthropology, 132(1), 1–16.CrossRefGoogle Scholar
  177. Lopreno, G. P., Alves Cardoso, F., Assis, S., Milella, M., & Speith, N. (2013). Categorization of occupation in documented skeletal collections: Its relevance for the interpretation of activity-related osseous changes. International Journal of Osteoarchaeology, 23(2), 175–185.CrossRefGoogle Scholar
  178. Macintosh, A. A., Pinhasi, R., & Stock, J. T. (2017). Prehistoric women’s manual labor exceeded that of athletes through the first 5500 years of farming in Central Europe. Science Advances, 3(11), eaao3893.CrossRefGoogle Scholar
  179. Machicek, M. L., & Beach, J. J. (2013). Stresses of life: A preliminary study of degenerative joint disease and dental health among ancient populations if Inner Asia. In I. Pechenkina & M. Oxenham (Eds.), Bioarchaeology of East Asia: Movement, contact, health (pp. 246–264). Gainesville, FL: University Press of Florida.CrossRefGoogle Scholar
  180. Maggiano, I. S., Schultz, M., Kierdof, H., Sierra Sosa, T., Maggiano, C. M., & Tiesler Blos, V. (2008). Cross-sectional analysis of long bones, occupational activities and long-distance trade of the Classic Maya from Xcambó—Archaeological and osteological evidence. American Journal of Physical Anthropology, 136(4), 470–477.CrossRefGoogle Scholar
  181. Malemud, C. J. (2015). The biological basis of osteoarthritis: State of the evidence. Current Opinion in Rheumatology, 27(3), 289–294.CrossRefGoogle Scholar
  182. Manchikanti, L., Singh, V., Pamapti, V., Beyer, C. D., & Damron, K. S. (2002). Evaluation of the prevalence of facet joint pain in chronic thoracic pain. Pain Physician, 5(4), 354–359.Google Scholar
  183. Mannoni, A., Briganti, M. P., Di Bari, M., Ferrucci, L., Costanzo, S., Serni, U., Masotti, G., & Marchionni, N. (2003). Epidemiological profile of symptomatic osteoarthritis in older adults: A population based study in Dicomano, Italy. Annals of the Rheumatic Diseases, 62(6), 576–578.CrossRefGoogle Scholar
  184. Mariotti, V., & Belcastro, M. G. (2011). Lower limb entheseal morphology in the Neandertal Krapina population (Croatia, 130,000 BP). Journal of Human Evolution, 60(6), 694–702.CrossRefGoogle Scholar
  185. Mariotti, V., Facchini, F., & Belcastro, M. G. (2004). Enthesopathies—Proposal of a standardized scoring method and applications. Collegium Antropologicum, 28(1), 145–159.Google Scholar
  186. Mariotti, V., Facchini, F., & Belcastro, M. G. (2007). The study of entheses: Proposal of a standardized scoring method for twenty-three entheses of the postcranial skeleton. Collegium Antropologicum, 31(1), 191–313.Google Scholar
  187. Martin, D. L., & Harrod, R. P. (2016). The bioarchaeology of pain and suffering: Human adaptation and survival during troubled times. In M. Hegmon (Ed.), Archaeology of the human experience (Vol. 27, pp. 161–174). Arlington, VA: Archaeological Papers of the American Anthropological Association.Google Scholar
  188. Mays, S. (2007). Spondylolysis in the lower thoracic-upper lumbar spine in a British Medieval population. International Journal of Osteoarchaeology, 17(6), 608–618.CrossRefGoogle Scholar
  189. Mays, S. (2016). Bone-formers and bone-losers in an archaeological population. American Journal of Physical Anthropology, 159(4), 577–584.CrossRefGoogle Scholar
  190. McGonagle, D. (2009). Enthesitis: An autoinflammatory lesion linking nail and joint involvement in psoriatic disease. Journal of the European Academy of Dermatology and Venereology, 23(s1), 9–13.CrossRefGoogle Scholar
  191. McGonagle, D., Lories, R. J. U., Tan, A. L., & Benjamin, M. (2007). The concept of a “synovio-entheseal complex” and its implications for understanding joint inflammation and damage in psoriatic arthritis and beyond. Arthritis and Rheumatism, 56(8), 2482–2491.CrossRefGoogle Scholar
  192. McGonagle, D., Marzo-Ortega, H., O’Connor, P., Gibbon, W., Pease, C., Reece, R., & Emery, P. (2002). The role of biomechanical factors and HLA-B27 in magnetic resonance imaging-determined bone changes in plantar fascia enthesopathy. Arthritis and Rheumatism, 46(2), 489–493.CrossRefGoogle Scholar
  193. McGonagle, D., Wakefield, R. J., Tan, A. L., D’Agostino, M. A., Toumi, H., Hayashi, K., Emery, P., & Benjamin, M. (2008). Distinct topography of erosion and new bone formation in Achilles tendon enthesitis: Implications for understanding the link between inflammation and bone formation in spondylarthritis. Arthritis and Rheumatism, 58(9), 2694–2699.CrossRefGoogle Scholar
  194. Merbs, C. F. (1983). Patterns of activity-induced pathology in a Canadian Inuit Population (Vol. 119). Ottawa, Canada: Archaeological Survey of Canada.CrossRefGoogle Scholar
  195. Merbs, C. F. (1996). Spondylolysis and spondylolisthesis: A cost of being an erect biped or clever adaptation? Yearbook of Physical Anthropology, 39(S23), 201–228.CrossRefGoogle Scholar
  196. Merbs, C. F., & Euler, R. C. (1985). Atlanto-occipital fusion and spondylolisthesis in an Anasazi skeleton from Bright Angel Ruin, Grand Canyon National Park, Arizona. American Journal of Physical Anthropology, 67(4), 381–391.CrossRefGoogle Scholar
  197. Messier, S. P., Leagult, C., Mihalko, S., Miller, G. D., Loeser, R. F., DeVita, P., Lyles, M., Eckstein, F., Hunter, D. J., Williamson, J. D., & Nicklas, B. J. (2009). The intensive diet and exercise for arthritis (IDEA) trial: Design and rational. BMC Musculoskeletal Disorders, 10, 93.CrossRefGoogle Scholar
  198. Michopoulou, E., Nikita, E., & Valakos, E. (2015). Evaluating the efficiency of different recording protocols for entheseal changes in regards to expressing activity patterns using archival data and cross-sectional geometric properties. American Journal of Physical Anthropology, 158, 557–568.CrossRefGoogle Scholar
  199. Middleton, K., & Fish, D. E. (2009). Lumbar spondylosis: Clinical presentation and treatment approaches. Current Reviews in Musculoskeletal Medicine, 2(2), 94–104.CrossRefGoogle Scholar
  200. Milella, M., Alves Cardoso, F., Assis, S., Perreard Lopreno, G., & Speith, N. (2015). Exploring the relationship between entheseal changes and physical activity: A multivariate study. American Journal of Physical Anthropology, 156(2), 215–223.CrossRefGoogle Scholar
  201. Milella, M., Belcastro, M. G., Zollikofer, C. P. E., & Mariotti, V. (2012). The effect of age, sex, and physical activity on entheseal morphology in a contemporary Italian skeletal collection. American Journal of Physical Anthropology, 148(3), 379–388.CrossRefGoogle Scholar
  202. Milgrom, C., Schaffler, M., Gilbert, S., & Van Holsbeeck, M. (1995). Rotator-cuff changes in asymptomatic adults. The effect of age, hand dominance and gender. Journal of Bone and Joint Surgery, 77(2), 296–298.CrossRefGoogle Scholar
  203. Minagawa, H., Yamamoto, N., Abe, H., Fukuda, M., Seki, N., Kikuchi, K., Kijima, H., & Itoi, E. (2013). Prevalence of symptomatic and asymptomatic rotator cuff tears in the general population: From mass-screening in one village. Journal of Orthopaedics, 10(1), 8–12.CrossRefGoogle Scholar
  204. Mok, F., Samartzis, D., Karppinen, J., Luk, K., Fong, D., & Gheung, K. (2010). Prevalence, determinants, and association of Schmorl’s nodes of the lumbar spine with disc degeneration: A population-based study of 2,449 individuals. Spine, 35, 1944–1952.CrossRefGoogle Scholar
  205. Molleson, T. (1989). Seed preparation in the Mesolithic: The osteological evidence. Antiquity, 63(239), 356–362.CrossRefGoogle Scholar
  206. Molleson, T. (2000). The people of Abu Hureyra. In A. T. M. Moore, G. C. Hillman, & A. J. Legge (Eds.), Village on the Euphrates: From foraging to farming at Abu Hureyra (pp. 301–324). Oxford, UK: Oxford University Press.Google Scholar
  207. Molnar, P. (2006). Tracing prehistoric activities: Musculoskeletal stress marker analysis of a Stone-Age population on the Island of Gotland in the Baltic Sea. American Journal of Physical Anthropology, 129(1), 12–23.CrossRefGoogle Scholar
  208. Molnar, P. (2010). Patterns of physical activity and material culture on Gotland, Sweden, during the Middle Neolithic. International Journal of Osteoarchaeology, 20(1), 1–14.Google Scholar
  209. Molnar, P., Ahlstrom, T. P., & Leden, I. (2011). Osteoarthritis and activity—An analysis of the relationship between eburnation, musculoskeletal stress markers (MSM) and age in two Neolithic hunter-gatherer populations from Gotland, Sweden. International Journal of Osteoarchaeology, 21(3), 283–291.CrossRefGoogle Scholar
  210. Moretz, J. A., Harlan, S. D., Goodrich, J., & Walters, R. (1984). Long-term follow up of knee injuries in High School football players. The American Journal of Sports Medicine, 12(4), 283–300.CrossRefGoogle Scholar
  211. Morita, T., Ikata, T., Katoh, S., & Miyake, R. (1995). Lumbar spondylolysis in children and adolescents. Journal of Bone and Joint Surgery, 77(4), 620–625.CrossRefGoogle Scholar
  212. Mountrakis, C., & Manolis, S. K. (2015). Entheseal changes of the upper limb in a Mycenaean population from Athens. Mediterranean Archaeology and Archaeometry, 15(1), 209–220.Google Scholar
  213. Munson Chapman, N. E. (1997). Evidence for Spanish influence on activity induced musculoskeletal stress markers at Pecos Pueblo. International Journal of Osteoarchaeology, 7(5), 497–506.CrossRefGoogle Scholar
  214. Murray, C. J. L., Ezzati, M., Flaxman, A. D., Lim, S., Lozano, R., Michaud, C., Vos, T., Wikler, D., & Lopez, A. D. (2012). GBD 2010: Design, definitions, and metrics. The Lancet, 380(9859), 2063–2066.CrossRefGoogle Scholar
  215. Murray, C. J. L., & Lopez, A. D. (1996). Regional patterns of disability-free life expectancy and disability-adjusted life expectancy: Global burden of disease study. The Lancet, 349, 1347–1352.CrossRefGoogle Scholar
  216. Nagy, B. L. B. (1999). Bioarchaeological evidence for atl-atl use in prehistory (abstract). American Journal of Physical Anthropology, S28, 208.Google Scholar
  217. Nagy, B. L. B., & Hawkey, D. E. (1995). Musculoskeletal stress markers as indicators of sexual division of labor: Multivariate analysis (abstract). American Journal of Physical Anthropology, S20, 158.Google Scholar
  218. Nevitt, M. C., Felson, D. T., Williams, E. N., & Grady, D. (2001). The effect of estrogen plus progestin on knee symptoms and related disability in postmenopausal women: The Heart and Estrogen/Progestin Replacement study, a randomized, double-blind, placebo-controlled trial. Arthritis and Rheumatism, 44(4), 811–818.CrossRefGoogle Scholar
  219. Nevitt, M. C., Zhang, Y., Javaid, M. K., Neogi, T., Curtis, J. R., Niu, J., McCulloch, C. E., Segal, N. A., & Felson, D. T. (2010). High systemic bone mineral density increases the risk of incident knee OA and joint space narrowing, but not radiographic progression of existing knee OA: The MOST study. Annals of the Rheumatic Diseases, 69, 163–168.CrossRefGoogle Scholar
  220. Niinimaki, S. (2011). What do muscle marker ruggedness scores actually tell us? International Journal of Osteoarchaeology, 21(3), 292–299.CrossRefGoogle Scholar
  221. Niinimäki, S., & Baiges Sotos, L. (2013). The relationship between intensity of physical activity and entheseal changes on the lower limb. International Journal of Osteoarchaeology, 23(2), 221–228.CrossRefGoogle Scholar
  222. Niinimaki, S., & Salmi, A.-K. (2014). Entheseal changes in free-ranging versus zoo reindeer—Observing activity status of reindeer. International Journal of Osteoarchaeology, 26(2), 314–323.CrossRefGoogle Scholar
  223. Niinimäki, S., Söderling, S., Junno, J.-A., Finnilä, M., & Niskanen, M. (2013). Cortical bone thickness can adapt locally to muscular loading while changing with age. Journal of Comparative Human Biology, 64(6), 474–490.CrossRefGoogle Scholar
  224. Nikita, E. (2014). The use of generalized linear models and generalized estimating equations in bioarchaeological studies. American Journal of Physical Anthropology, 153(3), 473–483.CrossRefGoogle Scholar
  225. Noldner, L. K., & Edgar, H. J. H. (2013). 3D representation and analysis of enthesis morphology. American Journal of Physical Anthropology, 152(3), 417–424.CrossRefGoogle Scholar
  226. Nolte, M., & Wilczak, C. (2010). Three-dimensional scanning of the biceps brachii attachment site: Advances and challenges of a new method. Paper presented at the 79th annual meeting of the American Association of Physical Anthropologists, Albuquerque, NM.Google Scholar
  227. Nolte, M., & Wilczak, C. A. (2013). Three-dimensional surface area of the distal biceps enthesis: Relationship to body size, sex, age and secular changes in a 20th century American sample. International Journal of Osteoarchaeology, 23(2), 163–174.CrossRefGoogle Scholar
  228. Oliveria, S. A., Felson, D. T., Reed, J. I., Cirillo, P. A., & Walker, A. M. (1995). Incidence of symptomatic hand, hip, and knee osteoarthritis among patients in a health maintenance organization. Arthritis and Rheumatism, 38(8), 1134–1141.CrossRefGoogle Scholar
  229. Ortner, D. (1968). Description and classification of degenerative bone changes in the distal joint surfaces of the humerus. American Journal of Physical Anthropology, 28(2), 139–156.CrossRefGoogle Scholar
  230. Ortner, D. (2003). Identification of pathological skeletons in human skeletal remains (2nd ed.). New York, NY: Academic Press.Google Scholar
  231. Ortner, D., & Putschar, W. G. J. (1985). Identification of pathological conditions in human skeletal remains. Washington, DC: Smithsonian Institution Press.Google Scholar
  232. Ortner, D. J., & Theobald, G. (1993). Diseases in the pre-Roman world. In K. F. Kiple (Ed.), The Cambridge World History of Human Disease (pp. 247–261). Cambridge, UK: Cambridge University Press.Google Scholar
  233. Palmer, J. L. A., Hoogland, M. H. L., & Waters-Rist, A. L. (2016). Activity reconstruction of Post-Medieval Dutch rural villagers from upper limb osteoarthritis and entheseal changes. International Journal of Osteoarchaeology, 26(1), 78–92.CrossRefGoogle Scholar
  234. Palmer, J. L. A., Quintelier, K., Inskip, S., & Waters-Rist, A. L. (in Press). A comparison of two methods for recording entheseal change on a Post-Medieval urban skeletal collection from Aalst (Belgium). Archaeometry.Google Scholar
  235. Pany, D., Viola, T. B., & Teschler-Nicola, M. (2009). The scientific value of using a 3D surface scanner to quantify entheses. Paper presented at the Workshop in Musculoskeletal Stress Markers, Coimbra, Portugal.Google Scholar
  236. Parrington, M., & Roberts, D. G. (1990). Demographic, cultural, and bioanthropological aspects of a nineteenth-century free Black population in Philadelphia, Pennsylvania. In J. E. Buikstra (Ed.), A life in science: Papers in honor of J. Lawrence Angel (pp. 138–170). Kampsville, IL: Center for American Archaeology Press.Google Scholar
  237. Petermann, H., & Sander, M. (2013). Histological evidence for muscle insertion in extant amniote femore: Implications for muscle reconstruction in fossils. Journal of Anatomy, 222(4), 419–436.CrossRefGoogle Scholar
  238. Peterson, J. (1998). The Natufian hunting conundrum: Spears, atlatls, or bows? Musculoskeletal and armature evidence. International Journal of Osteoarchaeology, 8(5), 378–389.CrossRefGoogle Scholar
  239. Pickering, R. B. (1979). Hunter-gatherer/agriculturalist arthritic patterns: A preliminary investigation. Henry Ford Hospital Medical Journal, 27, 50–53.Google Scholar
  240. Pilloud, M. A., & Conzonieri, C. (2014). The occurence and possible aetiology of spondylolysis in a Pre-contact California population. International Journal of Osteoarchaeology, 24(5), 602–613.CrossRefGoogle Scholar
  241. Plomp, K. A. (2017). The bioarchaeology of back pain. In J. F. Byrnes & J. L. Muller (Eds.), Bioarchaeology of impairment and disability (pp. 141–158). Cham, Switzerland: Springer.CrossRefGoogle Scholar
  242. Plomp, K. A., Roberts, C. A., & Vidarsdóttir, U. S. (2012). Vertebral morphology influences the development of Schmorl’s Nodes in the lower thoracic vertebrae. American Journal of Physical Anthropology, 149(4), 572–582.CrossRefGoogle Scholar
  243. Plomp, K. A., Roberts, C. A., & Strand Vidarsdottir, U. (2015a). Does the correlation between Schmorl’s nodes and vertebral morphology extend into the lumbar spine? American Journal of Physical Anthropology, 157(3), 526–534.CrossRefGoogle Scholar
  244. Plomp, K. A., Strand Vidarsdottir, U., Weston, D. A., Dobney, K., & Collard, M. (2015b). The ancestral shape hypothesis: An evolutionary explanation for the occurrence of intervertebral disc herniations in humans. BMC Evolutionary Biology, 15, 68–78.CrossRefGoogle Scholar
  245. Porter, R. W., & Park, W. (1982). Unilateral spondylolysis. Journal of Bone and Joint Surgery, 64, 344–348.CrossRefGoogle Scholar
  246. Raastad, J., Reiman, M., Coeytaux, R., Ledbetter, L., & Goode, A. P. (2015). The association between lumbar spine radiographic features and low back pain: A systematic review and meta-analysis. Seminars in Arthritis and Rheumatism, 44(5), 571–585.CrossRefGoogle Scholar
  247. Rai, M. F., Patra, D., Sandell, L. J., & Brophy, R. H. (2014). Relationship of gene expression in the injured human meniscus to body mass index: A biological connection between obesity and osteoarthritis. Arthritis & Rheumatology, 66(8), 2152–2164.CrossRefGoogle Scholar
  248. Rall, K. L., McElroy, G. L., & Keats, T. E. (1964). A study of long-term effects of football injury to the knee. Missouri Medicine, 61, 435–438.Google Scholar
  249. Reilly, P., Macleod, I., Macfarlane, R., Windley, J., & Emery, R. (2006). Dead men and radiologists don’t lie: A review of cadaveric and radiological studies of rotator cuff tear prevalence. Annals of the Royal College of Surgeons of England, 88(2), 116–121.CrossRefGoogle Scholar
  250. Reisner, G. A. (1923a). Excavations at Kerma. Parts I-III. Cambridge, UK: Harvard African Studies.Google Scholar
  251. Reisner, G. A. (1923b). Excavations at Kerma. Parts IV-V. Cambridge, UK: Harvard African Studies.Google Scholar
  252. Resnick, D. (2002). Diagnosis of bone and joint disorders. Philadelphia, PA: W.B. Saunders.Google Scholar
  253. Resnick, D., & Niwayama, G. (1978). Intravertebral disk herniations: Cartilaginous (Schmorl’s nodes). Radiology, 120(1), 57–65.CrossRefGoogle Scholar
  254. Robb, J. E. (1998). The interpretation of skeletal muscle sites: A statistical approach. International Journal of Osteoarchaeology, 8(5), 363–377.CrossRefGoogle Scholar
  255. Roberts, C., & Manchester, K. (2007). The archaeology of disease. Ithaca, NY: Cornell University Press.Google Scholar
  256. Rodríguez, L., Carrento, J. M., García-Conzález, R., & Arsuaga, J. L. (2018). Cross-sectional properties of the lower limb long bones in the Middle Pleistocene Sima de los Huesos sample (Sierra de Atapuerca, Spain). Journal of Human Evolution, 117, 1–12.CrossRefGoogle Scholar
  257. Rodriguez-Fontenla, C., Calaza, M., Evangelou, E., Valdes, A. M., Arden, N., Blanco, F. J., Reino, J. J., Helgadottir, H., Hofman, A., Jonsdottir, I., Kerkhof, H. J. M., Kloppenburg, M., McCaskie, A., Ntzani, E. E., Ollier, W. E. R., Oreiro, N., Panoutsopoulou, K., Ralston, S. H., Ramos, Y. F., Riancho, J. A., Rivadeneira, F., Slagboom, P. E., Styrkarsdottir, U., Thorsteinsdottir, U., Thorleifsson, G., Tsezou, A., Uitterlinden, A. G., Wallis, G. A., Wikinson, J. M., Zhai, G., Zhu, Y., arcOGEN Consortium, Felson, D. T., Ioannidis, J. P. A., Loughlinn, J., Metspalu, A., Meulenbelt, I., Stefansson, K., van Meurs, J. B., Zeggini, E., Spector, T. D., & Gonzalez, A. (2014). Assessment of osteoarthritis candidate genes in a meta-analysis of nine genome-wide association studies. Arthritis & Rheumatology, 66(4), 940–949.CrossRefGoogle Scholar
  258. Rogers, J. (2000). The paleopathology of joint disease. In M. Cox & S. Mays (Eds.), Human osteology in archaeology and forensic science (pp. 163–182). London, UK: Greenwich Medical Media.Google Scholar
  259. Rogers, J., Shepstone, L., & Dieppe, P. (1997). Bone formers: Osteophyte and enthesophyte formation are positively associated. Annals of the Rheumatic Diseases, 56(2), 85–90.CrossRefGoogle Scholar
  260. Rogers, J., & Waldron, T. (1995). A field guide to joint disease in archaeology. West Sussex, UK: Wiley.Google Scholar
  261. Rothschild, B. M. (1997). Porosity: A curiosity without diagnostic significance. American Journal of Physical Anthropology, 104(4), 529–533.CrossRefGoogle Scholar
  262. Roush, S. E. (2017). Consideration of disability from the perspective of the medical model. In J. F. Byrnes & J. L. Muller (Eds.), Bioarchaeology of impairment and disability (pp. 39–55). Cham, Switzerland: Springer.CrossRefGoogle Scholar
  263. Rufai, A., Ralphs, J. R., & Benjamin, M. (1995). Structure and histopathology of the insertional region of the human Achilles tendon. Journal of Orthopaedic Research, 13(4), 585–593.CrossRefGoogle Scholar
  264. Ruff, C. B. (2008). Biomechanical analyses of archaeological human skeletons. In M. A. Katzenberg & S. R. Saunders (Eds.), Biological anthropology of the human skeleton (2nd ed., pp. 183–206). New York, NY: Wiley.CrossRefGoogle Scholar
  265. Ruff, C., Holt, B., & Trinkaus, E. (2006). Who’s Afraid of the Big Bad Wolff?: “Wolff’s Law” and Bone Functional Adaptation. American Journal of Physical Anthropology, 120(4), 484–498.CrossRefGoogle Scholar
  266. Runhaar, J., Schiphof, D., van Meer, B., Reijman, M., Bierma-Zeinstra, S. M. A., & Oei, E. H. G. (2014). How to define subregional osteoarthritis progression using semi-quantitative MRI Osteoarthritis Knee Score (MOAKS). Osteoarthritis and Cartilage, 22(10), 1533–1536.CrossRefGoogle Scholar
  267. Sambrook, P. N., MacGregor, A. J., & Spector, T. D. (1999). Genetic influences on cervical and lumbar disc degeneration: A magnetic resonance imaging study in twins. Arthritis and Rheumatism, 42(2), 366–372.CrossRefGoogle Scholar
  268. Sanchez, S., Dupret, V., Tafforeau, P., Trinajstic, K. M., Ryll, B., Gouttenoire, P. J., Wretman, L., Zylbergberg, L., Peyrin, F., & Ahlberg, P. E. (2013). 3D microstructural architecture of muscle attachments in extant and fossil vertebrates revealed by synchrotron microtomography. PLoS One, 8(2), e56992.CrossRefGoogle Scholar
  269. Santana-Cabrera, J., Velasco-Vazquez, J., & Rodríguez-Rodríguez, A. (2015). Entheseal changes and sexual division of labor in a North-African population: The case of the pre-Hispanic period of the Gran Canaria Island (11th-15th c. CE). Journal of Comparative Human Biology, 66(2), 118–138.CrossRefGoogle Scholar
  270. Sarzi-Puttini, P., Atzeni, F., Fumagalli, M., Capsoni, F., & Carrabba, M. (2005). Osteoarthritis of the spine. Seminars in Arthritis and Rheumatism, 34(6), 38–43.CrossRefGoogle Scholar
  271. Schmorl, G., & Junghanns, H. (1971). Human spine in health and disease (2nd ed.). New York, NY and London, UK: Grune & Stratton.Google Scholar
  272. Schlomka, G., Schroter, G., & Ochernal, A. (1955). Role of occupational stress in pathogenesis of degenerative joint disease. Zeitschrift fur die Gesamte Innere Mezin, 10(21), 993–999.Google Scholar
  273. Schrader, S. A. (2012). Activity patterns in New Kingdom Nubia: An examination of entheseal remodeling and osteoarthritis at Tombos. American Journal of Physical Anthropology, 149(1), 60–70.CrossRefGoogle Scholar
  274. Schrader, S. A. (2015). Elucidating inequality in Nubia: An examination of entheseal changes at Kerma (Sudan). American Journal of Physical Anthropology, 156(2), 192–202.CrossRefGoogle Scholar
  275. Shaibani, A., Workman, R., & Rothschild, B. M. (1993). The significance of enthesopathy as a skeletal phenomenon. Clinical and Experimental Rheumatology, 11(4), 399–403.Google Scholar
  276. Shaw, H. M., & Benjamin, M. (2007). Structure-function relationships of entheses in relation to mechanical load and exercise. Scandinavian Journal of Medicine and Science in Sports, 17(4), 303–315.CrossRefGoogle Scholar
  277. Shaw, H. M., Vázquez, O. T., McGonagle, D., Bydder, G., Santer, R. M., & Benjamin, M. (2008). Development of the human Achilles tendon enthesis organ. Journal of Anatomy, 213(6), 718–724.CrossRefGoogle Scholar
  278. Shaw, C. N., & Stock, J. T. (2009). Intensity, repetitiveness, and directionality of habitual adolescent mobility patterns influence the tibial diaphysis morphology of athletes. American Journal of Physical Anthropology, 140(1), 149–159.CrossRefGoogle Scholar
  279. Silverwood, V., Blagojevic-Bucknall, M., Jinks, C., Jordan, J. L., Protheroe, J., & Jordan, K. P. (2015). Current evidence on risk factors for knee osteoarthritis in older adults: A systematic review and meta-analysis. Osteoarthritis and Cartilage, 23(4), 507–515.CrossRefGoogle Scholar
  280. Sofaer, J. (2000). Sex differences in activity-related osseous change in the spine and the gendered division of labor at Ensay and Wharram Percy, UK. American Journal of Physical Anthropology, 111(3), 333–354.CrossRefGoogle Scholar
  281. Solonen, K. A. (1966). The joints of the lower extremities of football players. Annales chirurgiae et gynaecologiae fenniae, 55(3), 176–180.Google Scholar
  282. Spector, T. D., Hart, D. J., Byrne, J., Harris, P. A., Dacre, J. E., & Doyle, D. V. (1993). Definition of osteoarthritis of the knee for epidemiological studies. Annals of the Rheumatic Diseases, 52(11), 790–794.CrossRefGoogle Scholar
  283. Spector, T. D., & MacGregor, A. (2004). Risk factors for osteoarthritis: Genetics. Osteoarthritis and Cartilage, 12, S39–S44.CrossRefGoogle Scholar
  284. Srikanth, V., Fryer, J. L., Zhai, G., Winzenberg, T. M., & Hosmer, D. (2005). A meta-analysis of sex differences prevalence, incidence and severity of osteoarthritis. Osteoarthritis and Cartilage, 13(9), 769–781.CrossRefGoogle Scholar
  285. Standaert, C. J., & Herring, S. J. (2000). Spondylolysis: A critical review. British Journal of Sports Medicine, 34(6), 415–422.CrossRefGoogle Scholar
  286. Steckel, R. H., Larsen, C. S., Sciulli, P. W., & Walker, P. L. (2006). The global history of health project: Data collection codebook. Columbus, OH: The Ohio State University.Google Scholar
  287. Steen, S. L., & Lane, R. W. (1998). Evaluation of habitual activities among two Alaskan Eskimo populations based on musculoskeletal stress markers. International Journal of Osteoarchaeology, 8(5), 341–353.CrossRefGoogle Scholar
  288. Stenlund, B., Goldie, I., Hagberg, M., & Hogstedt, C. (1993). Shoulder tendinitis and its relation to heavy manual work and exposure to vibration. Scandinavian Journal of Work, Environment and Health, 19(1), 43–49.CrossRefGoogle Scholar
  289. Stirland, A. J. (1998). Musculoskeletal evidence for activity: Problems of evaluation. International Journal of Osteoarchaeology, 8(5), 354–362.CrossRefGoogle Scholar
  290. Stock, J. T., & Shaw, C. N. (2007). Which measures of diaphyseal robusticity are robust? A comparison of external methods of quantifying the strength of long bone diaphyses to cross-sectional geometric properties. American Journal of Physical Anthropology, 134(3), 412–423.CrossRefGoogle Scholar
  291. Stodder, A. L. W. (2017). Quantifying impairment and disability in bioarchaeological assemblages. In J. F. Byrnes & J. L. Muller (Eds.), Bioarchaeology of impairment and disability (pp. 183–200). Cham, Switzerland: Springer.CrossRefGoogle Scholar
  292. Storheim, K., & Zwart, J.-A. (2014). Musculoskeletal disorders and the Global Burden of Disease study. Annals of the Rheumatic Diseases, 73(6), 949–950.CrossRefGoogle Scholar
  293. Stulberg, S. D., Shulman, K., Stuart, S., & Culp, P. (1980). Breaststroker’s knee: Pathology, etiology and treatment. The American Journal of Sports Medicine, 8(3), 339–343.CrossRefGoogle Scholar
  294. Suzuki, S., Sunagawa, M., Shindo, M., Kimura, R., Yamagushi, K., Sato, T., Yoneda, M., Nagaoka, T., Saiki, K., Wakebe, T., Hirata, K., Tsurumoto, T., & Ishida, H. (2016). Degenerative changes in the appendicular joints of ancient human populations from the Japan Islands. Quaternary International, 405(B), 147–159.CrossRefGoogle Scholar
  295. Szulc, P., & Seeman, E. (2009). Thinking inside and outside of the envelopes of bone. Osteoporosis International, 20(8), 1281–1288.CrossRefGoogle Scholar
  296. Taljanovic, M. S., Graham, A. R., Bemjamin, J. B., Gmitro, A. F., Krupinksi, E. A., Schwartz, S. A., Hunter, T. B., & Resnick, R. L. (2008). Bone marrow edema pattern in advanced hip osteoarthritis: Quantitative assessment with magnetic resonance imaging and correlation with clinical examination, radiographic findings, and histopathology. Skeletal Radiology, 37(5), 423–431.CrossRefGoogle Scholar
  297. Thelin, A. (1990). Hip joint arthrosis: An occupational disorder among farmers. American Journal of Industrial Medicine, 18(3), 339–343.CrossRefGoogle Scholar
  298. Thomopoulos, S., Genin, G. M., & Galatz, L. M. (2010). The development and morphogenesis of the tendon-to-bone insertion: What development can teach us about healing. Journal of Musculoskeletal Neuronal Interaction, 10(1), 35–45.Google Scholar
  299. Thomopoulos, S., Zampiakis, E., Das, R., Silva, M. J., & Gelberman, R. H. (2008). The effect of muscle loading on flexor tendon-to-bone healing in a canine model. Journal of Orthopaedic Research, 26(12), 1611–1617.CrossRefGoogle Scholar
  300. Tilley, L. (2015). Theory and practice in the bioarchaeology of care. Cham, Switzerland: Springer.CrossRefGoogle Scholar
  301. Tilley, L., & Cameron, T. (2014). Introducing the Index of Care: A web-based application supporting archaeological research into health-related care. International Journal of Paleopathology, 6, 5–9.CrossRefGoogle Scholar
  302. Tilley, L., & Oxenham, M. F. (2011). Survival against all the odds: Modeling the social implications of care provision to seriously disabled individuals. International Journal of Paleopathology, 1, 35–42.CrossRefGoogle Scholar
  303. Tilley, L., & Schrenk, A. A. (Eds.). (2017). New developments in the bioarchaeology of care. Cham, Switzerland: Springer.Google Scholar
  304. Trigger, B. (1976). Nubia under the Pharoahs. Boulder, CO: Westview Press.Google Scholar
  305. Turunen, M. J., Prantner, V., Jurvelin, J. S., Kröger, H., & Isaksson, H. (2013). Composition and microarchitecture of human trabecular bone changes with age and differ between anatomical locations. Bone, 54(1), 118–125.CrossRefGoogle Scholar
  306. Uhthoff, H. K., Trudel, G., & Himori, K. (2003). Relevance of pathology and basic research to the surgeon treating rotator cuff disease. Journal of Orthopaedic Science, 8(3), 449–456.CrossRefGoogle Scholar
  307. Uitterlinden, A. G., Burger, H., van Duijn, C. M., Huang, Q., Hofman, A., Birkenhäger, J. C., Johannes, P. T. M., & Pols, H. A. P. (2000). Adjacent genes, for COL2A1 and the vitamin D receptor, are associated with separate features of radiographic osteoarthritis of the knee. Arthritis and Rheumatism, 43(7), 1456–1464.CrossRefGoogle Scholar
  308. Üstündag, H. (2009). Schmorl’s nodes in a post-medieval skeletal sample from Klostermarienberg, Austria. International Journal of Osteoarchaeology, 19(6), 695–710.CrossRefGoogle Scholar
  309. Valdes, A. M., Loughlin, J., Timms, K. M., van Meurs, J. J., Southam, L., Wilson, S. G., Doherty, S., Lories, R. J., Luyten, F. P., Gutin, A., Abkevich, V., Ge, D., Hofman, A., Uitterlinden, A. G., Hart, D. J., Zhang, F., Zhai, G., Egli, R. J., Doherty, M., Lanchbury, J., & Spector, T. D. (2008). Genome-wide association scan identifies a prostaglandin-endoperoxide synthase 2 variant involved in risk of knee osteoarthritis. American Journal of Human Genetics, 82(6), 1231–1240.CrossRefGoogle Scholar
  310. Valdes, A. M., & Spector, T. D. (2008). The contribution of genes to osteoarthritis. Medical Clinics of North America, 93(3), 45–66.Google Scholar
  311. van Schoor, N. M., Smit, J. H., Twisk, J. W. R., & Lips, P. (2005). Impact of vertebral deformities, osteoarthritis, and other chronic diseases on quality of life: A population-based study. Osteoporosis International, 16(7), 749–756.CrossRefGoogle Scholar
  312. Vignon, E., Valat, J.-P., Rossignol, M., Avouac, B., Rozenberg, S., Thournie, P., Avouac, J., Nordin, M., & Hilliquin, P. (2006). Osteoarthritis of the knee and hip and activity: A systemic international review and synthesis (OASIS). Joint Bone Spine, 73(4), 442–455.CrossRefGoogle Scholar
  313. Villotte, S. (2006). Connaissances médicales actuelles, cotation des enthésopathies: Nouvelle méthode. Bulletins et Mémoires de la Société d’Anthropologie de Paris, 18, 65–85.Google Scholar
  314. Villotte, S. (2009). Enthésopathies et activités des Hommes préhistoriques: Recherche méthodologique et application aux fossiles européens du Paléolithique supérieur et du Mésolithique. Oxford, UK: Archaeopress.Google Scholar
  315. Villotte, S., Castex, D., Couallier, V., Dutour, O., Knusel, C. J., & Henry-Gambier, D. (2010). Enthesopathies as occupational stress markers: Evidence from the upper limb. American Journal of Physical Anthropology, 142(2), 224–234.Google Scholar
  316. Villotte, S., & Knüsel, C. J. (2013). Understanding entheseal changes: Definition and life course changes. International Journal of Osteoarchaeology, 23(2), 127–134.CrossRefGoogle Scholar
  317. Villotte, S., & Knüsel, C. J. (2014). “I sing of arms and of a man...”: Medial epicondylosis and the sexual division of labour in prehistoric Europe. Journal of Archaeological Science, 43, 168–174.CrossRefGoogle Scholar
  318. Villotte, S., Assis, S., Alves Cardoso, F., Henderson, C. Y., Mariotti, V., Milella, M., Pany-Kucera, D., Speith, N., Wilczak, C., & Jurmain, R. (2016). In search of consensus: Terminology for entheseal change (EC). International Journal of Paleopathology, 13, 49–55.CrossRefGoogle Scholar
  319. Vincelette, P., Laurin, C. A., & Levesque, H. P. (1972). The footballer’s ankle and foot. Canadian Medical Association Journal, 107(9), 872–895.Google Scholar
  320. Waldron, T. (1994). Counting the dead: The epidemiology of skeletal populations. Chichester, UK: Wiley.Google Scholar
  321. Waldron, T. (2009). Paleopathology. Cambridge, UK: Cambridge University Press.Google Scholar
  322. Waldron, T. (2012). Joint disease. In A. L. Grauer (Ed.), A companion to paleopathology. Chichester, UK: Wiley-Blackwell.Google Scholar
  323. Waldron, H. A., & Cox, M. (1989). Occupational arthropathy: Evidence from the past. British Journal of Industrial Medicine, 46(6), 420–422.Google Scholar
  324. Walker, P. L., & Holliman, S. E. (1989). Changes in osteoarthritis associated with the development of a maritime economy among Southern California Indians. International Journal of Anthropology, 4(3), 171–183.CrossRefGoogle Scholar
  325. Wallace, I. J., Winchester, J. M., Su, A., Boyer, D. M., & Konow, N. (2017). Physical activity alters limb bone structure but not entheseal morphology. Journal of Human Evolution, 107, 14–18.CrossRefGoogle Scholar
  326. Watkins, R. (2012). Variation in health and socioeconomic status within the W. Montague Cobb skeletal collection: Degenerative joint disease, trauma and case of death. International Journal of Osteoarchaeology, 22(1), 22–44.CrossRefGoogle Scholar
  327. Weiss, E. (2003a). Understanding muscle markers: Aggregation and construct validity. American Journal of Physical Anthropology, 121(3), 230–240.CrossRefGoogle Scholar
  328. Weiss, E. (2003b). Effects of rowing on humeral strength. American Journal of Physical Anthropology, 121(4), 293–302.CrossRefGoogle Scholar
  329. Weiss, E. (2004). Understanding muscle markers: Lower limbs. American Journal of Physical Anthropology, 125(3), 232–238.CrossRefGoogle Scholar
  330. Weiss, E. (2006). Osteoarthritis and body mass. Journal of Archaeological Science, 33, 690–695.CrossRefGoogle Scholar
  331. Weiss, E. (2007). Muscle markers revisited: Activity pattern reconstruction with controls in a Central California Amerind population. American Journal of Physical Anthropology, 133(3), 931–940.CrossRefGoogle Scholar
  332. Weiss, E. (2009). Sex differences in humeral bilateral asymmetry in two hunter-gatherer populations: California Amerinds and British Columbian Amerinds. American Journal of Physical Anthropology, 140(1), 19–24.CrossRefGoogle Scholar
  333. Weiss, E. (2014). Knee osteoarthritis, body mass index and pain: Data from the osteoarthritis initiative. Radiology, 53(11), 2095–2099.Google Scholar
  334. Weiss, E. (2015). The surface of bones: Methods of recording entheseal changes. Surface Topography: Metrology and Properties, 3, 034003.Google Scholar
  335. Weiss, E., Corona, L., & Schultz, B. (2012). Sex differences in musculoskeletal stress markers: Problems with activity pattern reconstructions. International Journal of Osteoarchaeology, 22(1), 70–80.CrossRefGoogle Scholar
  336. Weiss, E., & Jurmain, R. (2007). Osteoarthritis revisited: A contemporary review of aetiology. International Journal of Osteoarchaeology, 17(5), 437–450.CrossRefGoogle Scholar
  337. Wilczak, C. A. (1998). Consideration of sexual dimorphism, age, and asymmetry in quantitative measurements of muscle insertion sites. International Journal of Osteoarchaeology, 8(5), 311–325.CrossRefGoogle Scholar
  338. Wilczak, C. A., Mariotti, V., Pany-Kucera, D., Villotte, S., & Henderson, C. Y. (2017). Training and interobserver reliability in qualitative scoring of skeletal samples. Journal of Archaeological Science: Reports, 11, 69–79.CrossRefGoogle Scholar
  339. Williams, F. M. K., Manek, N. J., Sambrook, P. N., Spector, T. D., & MacGregor, A. J. (2007). Schmorl’s nodes: Common, highly heritable, and related to lumbar disc disease. Arthritis and Rheumatism, 57(5), 855–860.CrossRefGoogle Scholar
  340. Wluka, A. E., Cicuttini, F., & Spector, T. D. (2000). Menopause, oestrogens, and arthritits. Maturitas, 35(3), 183–199.CrossRefGoogle Scholar
  341. Woo, E. J., & Pak, S. (2013). Degenerative joint diseases and enthesopathies in a Joseon Dynasty population from Korea. Journal of Comparative Human Biology, 64(2), 104–119.CrossRefGoogle Scholar
  342. Woo, E. J., & Sciulli, P. W. (2013). Degenerative joint disease and social status in the Terminal Late Archaic Period (1000-500 B.C.) of Ohio. International Journal of Osteoarchaeology, 23(5), 529–544.Google Scholar
  343. Woods, G. W., Tullos, H. S., & King, J. W. (1973). The throwing arm: Elbow joint injuries. The American Journal of Sports Medicine, 1(4), 43–47.CrossRefGoogle Scholar
  344. Woods, R. J. (1995). Biomechanics of osteoarthritis of the knee. Unpublished Ph.D. dissertation, The Ohio State University, Columbus, OH.Google Scholar
  345. Woolf, A. D., & Pfleger, B. (2003). Burden of major musculoskeletal conditions. Bulletin of the World Health Organization, 81, 646–656.Google Scholar
  346. Wright, G. D. (1996). Association of two loci on chromosome 2q with nodal osteoarthritis. Annals of the Rheumatic Diseases, 55(5), 317–319.CrossRefGoogle Scholar
  347. Yamamoto, A., Takgishi, K., Osawa, T., Yanagawa, T., Nakajima, D., Shitara, H., & Kobayashi, T. (2010). Prevalence and risk factors of a rotator cuff tear in the general population. Journal of Shoulder and Elbow Surgery, 19(1), 116–120.CrossRefGoogle Scholar
  348. Yonemoto, S. (2016). Differences in the effects of age on the development of entheseal changes among historical Japanese populations. American Journal of Physical Anthropology, 159(2), 267–283.CrossRefGoogle Scholar
  349. Yusuf, E., Kortekaas, M. C., Watt, I., Huizinga, T. W. J., & Kloppenburg, M. (2011). Do knee abnormalities visualized on MRI explain knee pain in knee osteoarthritis? A systemic review. Annals of the Rheumatic Diseases, 70, 60–67.CrossRefGoogle Scholar
  350. Zampetti, S., Mariotti, V., Radi, N., & Belcastro, M. G. (2016). Variation of skeletal degenerative joint disease features in an identified Italian modern skeletal collection. American Journal of Physical Anthropology, 160(4), 683–693.CrossRefGoogle Scholar
  351. Zhang, N., Li, F., Huang, Y., Teng, C., & Chen, W. (2010). Possible key role of immune system in Schmorl’s nodes. Medical Hypotheses, 74(3), 552–554.CrossRefGoogle Scholar
  352. Zhang, H., Merrett, D. C., Jing, Z., Tang, J., He, Y., Yue, H., Yue, Z., & Yang, D. Y. (2017). Osteoarthritis, labour division, and occupational specialization of the Late Shang China—Insights from Yinxu (ca. 1250-1046 B.C.). PLoS One, 12(5), e0176329.CrossRefGoogle Scholar
  353. Zumwalt, A. (2005). A new method for quantifying the complexity of muscle attachment sites. The Anatomical Record, 262B, 21–28.CrossRefGoogle Scholar
  354. Zumwalt, A. (2006). The effect of endurance exercise on the morphology of muscle attachment sites. The Journal of Experimental Biology, 209, 444–454.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sarah Schrader
    • 1
  1. 1.Faculty of ArchaeologyLeiden UniversityLeidenThe Netherlands

Personalised recommendations