Advertisement

Complexity and Expressivity of Branching- and Alternating-Time Temporal Logics with Finitely Many Variables

  • Mikhail Rybakov
  • Dmitry Shkatov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11187)

Abstract

We show that Branching-time temporal logics CTL and \(\mathbf{CTL}^*\), as well as Alternating-time temporal logics ATL and \(\mathbf{ATL}^*\), are as semantically expressive in the language with a single propositional variable as they are in the full language, i.e., with an unlimited supply of propositional variables. It follows that satisfiability for CTL, as well as for ATL, with a single variable is EXPTIME-complete, while satisfiability for \(\mathbf{CTL}^*\), as well as for \(\mathbf{ATL}^\mathbf{*}\), with a single variable is 2EXPTIME-complete,—i.e., for these logics, the satisfiability for formulas with only one variable is as hard as satisfiability for arbitrary formulas.

Keywords

Branching-time temporal logics Alternating-time temporal logics Finite-variable fragments Computational complexity Semantic expressivity Satisfiability problem 

References

  1. 1.
    Alur, R., Henzinger, T.A., Kuperman, O.: Alternating-time temporal logic. J. ACM 49(5), 672–713 (2002).  https://doi.org/10.1145/585265.585270MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Blackburn, P., Spaan, E.: A modal perspective on the computational complexity of attribute value grammar. J. Log. Lang. Inf. 2, 129–169 (1993).  https://doi.org/10.1007/bf01050635MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chagrov, A., Rybakov, M.: How many variables does one need to prove PSPACE-hardness of modal logics? In: Advances in Modal Logic, vol. 4, pp. 71–82. King’s College Publications (2003)Google Scholar
  4. 4.
    Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching time temporal logic. Logics of Programs. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1981).  https://doi.org/10.1007/bfb0025774CrossRefGoogle Scholar
  5. 5.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (2000)Google Scholar
  6. 6.
    David, A.: Deciding \(\sf ATL^*\) satisfiability by tableaux. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 214–228. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21401-6_14CrossRefGoogle Scholar
  7. 7.
    Demri, S., Goranko, V., Lange, M.: Temporal Logics in Computer Science. Cambridge Tracts in Theoretical Computer Science, vol. 58. Cambridge University Press, Cambridge (2016).  https://doi.org/10.1017/cbo9781139236119CrossRefzbMATHGoogle Scholar
  8. 8.
    Demri, S., Schnoebelen, P.: The complexity of propositional linear temporal logics in simple cases. Inf. Comput. 174(1), 84–103 (2002).  https://doi.org/10.1006/inco.2001.3094MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Studies In Epistemology, Logic, Methodology, and Philosophy of Science, vol. 337. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-1-4020-5839-4CrossRefzbMATHGoogle Scholar
  10. 10.
    Emerson, E.A., Halpern, J.: Decision procedures and expressiveness in temporal logic of branching time. J. Comput. Syst. Sci. 30(1), 1–24 (1985).  https://doi.org/10.1016/0022-0000(85)90001-7MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Emerson, E.A., Halpern, J.Y.: “Sometimes and not never” revisited: on branching versus linear time temporal logic. J. ACM 33(1), 151–178 (1986).  https://doi.org/10.1145/4904.4999MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press, Cambridge (1995)zbMATHGoogle Scholar
  13. 13.
    Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput. Syst. Sci. 18, 194–211 (1979).  https://doi.org/10.1016/0022-0000(79)90046-1MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Goranko, V., van Drimmelen, G.: Complete axiomatization and decidability of the alternating-time temporal logic. Theor. Comput. Sci. 353(1–3), 93–117 (2006).  https://doi.org/10.1016/j.tcs.2005.07.043MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Goranko, V., Passy, S.: Using the universal modality: gains and questions. J. Log. Comput. 2(1), 5–30 (1989).  https://doi.org/10.1093/logcom/2.1.5MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Goranko, V., Shkatov, D.: Tableau-based decision procedure for multi-agent epistemic logic with operators of common and distributed knowledge. In: Proceedings of 6th IEEE International Conference on Software Engineering and Formal Methods, SEFM 2008, Cape Town, November 2008, pp. 237–246. IEEE CS Press, Washington, DC (2008).  https://doi.org/10.1109/sefm.2008.27
  17. 17.
    Goranko, V., Shkatov, D.: Tableau-based decision procedure for full coalitional multiagent temporal-epistemic logic of linear time. In: Sierra, C., Castelfranchi, C., Decker, K.S., Sichman, J.S. (eds.) Proceedings of 8th International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2009, Budapest, May 2009, vol. 2, pp. 969–976. International Federation AAMAS (2009). https://dl.acm.org/citation.cfm?id=1558147
  18. 18.
    Goranko, V., Shkatov, D.: Tableau-based decision procedure for the full coalitional multiagent temporal-epistemic logic of branching time. In: Baldoni, M., et al. (eds.) Proceedings of 2nd Multi-Agent Logics, Languages, and Organisations Federated Workshops, Turin, September 2009, CEUR Workshop Proceedings, vol. 494, CEUR-WS.org (2009). http://ceur-ws.org/Vol-494/famaspaper7.pdf
  19. 19.
    Goranko, V., Shkatov, D.: Tableau-based decision procedures for logics of strategic ability in multiagent systems. ACM Trans. Comput. Log. 11(1) (2009).  https://doi.org/10.1145/1614431.1614434. Article 3MathSciNetCrossRefGoogle Scholar
  20. 20.
    Goranko, V., Shkatov, D.: Tableau-based procedure for deciding satisfiability in the full coalitional multiagent epistemic logic. In: Artemov, S., Nerode, A. (eds.) LFCS 2009. LNCS, vol. 5407, pp. 197–213. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-92687-0_14CrossRefGoogle Scholar
  21. 21.
    Halpern, J.Y.: The effect of bounding the number of primitive propositions and the depth of nesting on the complexity of modal logic. Artif. Intell. 75(2), 361–372 (1995).  https://doi.org/10.1016/0004-3702(95)00018-aMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Halpern, J.Y., Vardi, M.Y.: The complexity of reasoning about knowledge and time I: lower bounds. J. Comput. Syst. Sci. 38(1), 195–237 (1989).  https://doi.org/10.1016/0022-0000(89)90039-1MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Hemaspaandra, E.: The complexity of poor man’s logic. J. Log. Comput. 11(4), 609–622 (2001).  https://doi.org/10.1093/logcom/11.4.609MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    van der Hoek, W., Wooldridge, M.: Cooperation, knowledge, and time: alternating-time temporal epistemic logic and its applications. Studia Logica 75(1), 125–157 (2003).  https://doi.org/10.1023/a:1026185103185MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning About Systems, 2nd edn. Cambridge University Press, Cambridge (2004).  https://doi.org/10.1017/cbo9780511810275CrossRefzbMATHGoogle Scholar
  26. 26.
    Lutz, C.: Complexity and succinctness of public announcement logic. In: Nakashima, H., Wellman, M.P., Weiss, G., Stone, P. (eds.) Proceedings of 5th International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2006, Hakodate, May 2006, pp. 137–143. ACM Press (2006).  https://doi.org/10.1145/1160633.1160657
  27. 27.
    Nagle, M.C., Thomason, S.K.: The extensions of the modal logic K5. J. Symb. Log. 50(1), 102–109 (1975).  https://doi.org/10.2307/2273793CrossRefzbMATHGoogle Scholar
  28. 28.
    Nishimura, I.: On formulas of one variable in intuitionistic propositional calculus. J. Symb. Log. 25(4), 327–331 (1960).  https://doi.org/10.2307/2963526MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Plaza, J.A.: Logics of public communications. In: Emrich, M.L., Pfeifer, M.S., Hadzikadic, M., Ras, Z.W. (eds.) Proceedings of 4th International Symposium on Methodologies for Intelligent Systems: Poster Session Program, pp. 201–216, Oak Ridge National Laboratory (1989). (Reprinted as: Synthese 158(2), 165–179 (2007).  https://doi.org/10.1007/s11229-007-9168-7)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Reynolds, M.: A tableau for CTL*. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 403–418. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-05089-3_26CrossRefGoogle Scholar
  31. 31.
    Rybakov, M., Shkatov, D.: Complexity and expressivity of propositional dynamic logics with finitely many variables. Log. J. IGPL 26(5), 539–547 (2018).  https://doi.org/10.1093/jigpal/jzy014MathSciNetCrossRefGoogle Scholar
  32. 32.
    Rybakov, M., Shkatov, D.: Complexity of finite-variable fragments of propositional modal logics of symmetric frames. Log. J. IGPL (to appear).  https://doi.org/10.1093/jigpal/jzy018
  33. 33.
    Rybakov, M., Shkatov, D.: Undecidability of first-order modal and intuitionistic logics with two variables and one monadic predicate letter. Studia Logica (to appear).  https://doi.org/10.1007/s11225-018-9815-7
  34. 34.
    Schewe, S.: ATL* satisfiability Is 2EXPTIME-complete. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 373–385. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-70583-3_31CrossRefGoogle Scholar
  35. 35.
    Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press, Cambridge (2008).  https://doi.org/10.1017/cbo9780511811654CrossRefzbMATHGoogle Scholar
  36. 36.
    Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics. J. ACM 32(3), 733–749 (1985).  https://doi.org/10.1145/3828.3837MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Vardi, M.Y., Stockmeyer, L.: Improved upper and lower bounds for modal logics of programs (preliminary report). In: Proceedings of 17th Annual ACM Symposium on Theory of Computing, STOC 1985, Providence, RI, May 1985, pp. 240–251. ACM Press, New York (1985).  https://doi.org/10.1145/22145.22173
  38. 38.
    Švejdar, V.: The decision problem of provability logic with only one atom. Arch. Math. Log. 42(8), 763–768 (2003).  https://doi.org/10.1007/s00153-003-0180-4MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Walther, D.: ATEL with common and distributed knowledge is ExpTime-complete. In: Schlingloff, H. (ed.) Methods for Modalities 4. Informatik-Berichte, vol. 194, pp. 173–186. Humboldt-Universität zu Berlin (2005)Google Scholar
  40. 40.
    Walther, D., Lutz, C., Wolter, F., Wooldridge, M.: ATL satisfiability is indeed EXPTIME-complete. J. Log. Comput. 16(6), 765–787 (2006).  https://doi.org/10.1093/logcom/exl009MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Tver State UniversityTverRussia
  2. 2.University of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations