Advertisement

Weak Bisimulation Metrics in Models with Nondeterminism and Continuous State Spaces

  • Ruggero Lanotte
  • Simone Tini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11187)

Abstract

Bisimulation metrics are used to estimate the behavioural distance between probabilistic systems. They have been defined in discrete and continuous state space models. However, the weak semantics approach, where non-observable actions are abstracted away, has been adopted only in the discrete case. We fill this gap and provide a weak bisimulation metric for models with continuous state spaces. A difficulty is to provide a notion of weak transition leaving from a continuous distribution over states. Our weak bisimulation metric allows for compositional reasoning. Systems at distance zero are equated by a notion of weak bisimulation. We apply our theory in a case study where continuous distributions derive by the evolution of the physical environment.

Keywords

Weak bisimulation metric Nondeterminism Continuous state space 

References

  1. 1.
    Abate, A., Prandini, M., Lygeros, J., Sastry, S.: Probabilistic reachability and safety for controlled discrete time stochastic hybrid systems. Automatica 44(11), 2724–2734 (2008).  https://doi.org/10.1016/j.automatica.2008.03.027MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bravetti, M.: Specification and analysis of stochastic real-time systems. Ph.D. thesis, Università di Bologna (2002)Google Scholar
  3. 3.
    Bravetti, M., Gorrieri, R.: The theory of interactive generalized semi-Markov processes. Theor. Comput. Sci. 282(1), 5–32 (2002).  https://doi.org/10.1016/s0304-3975(01)00043-3MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bujorianu, M.L.: Extended stochastic hybrid systems and their reachability problem. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 234–249. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24743-2_16CrossRefzbMATHGoogle Scholar
  5. 5.
    Bujorianu, M.L., Lygeros, J., Bujorianu, M.C.: Bisimulation for general stochastic hybrid systems. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 198–214. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-31954-2_13CrossRefzbMATHGoogle Scholar
  6. 6.
    Cattani, S., Segala, R., Kwiatkowska, M., Norman, G.: Stochastic transition systems for continuous state spaces and non-determinism. In: Sassone, V. (ed.) FoSSaCS 2005. LNCS, vol. 3441, pp. 125–139. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-31982-5_8CrossRefzbMATHGoogle Scholar
  7. 7.
    Chatzikokolakis, K., Gebler, D., Palamidessi, C., Xu, L.: Generalized bisimulation metrics. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 32–46. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44584-6_4CrossRefGoogle Scholar
  8. 8.
    Deng, Y., Chothia, T., Palamidessi, C., Pang, J.: Metrics for action-labelled quantitative transition systems. Electron. Notes Theor. Comput. Sci. 153(2), 79–96 (2006).  https://doi.org/10.1016/j.entcs.2005.10.033CrossRefGoogle Scholar
  9. 9.
    Deng, Y., Du, W.: The Kantorovich metric in computer science: a brief survey. Electron. Notes Theor. Comput. Sci. 253(3), 73–82 (2009).  https://doi.org/10.1016/j.entcs.2009.10.006CrossRefGoogle Scholar
  10. 10.
    Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.: Characterising testing preorders for finite probabilistic processes. Log. Methods Comput. Sci. 4(4), Article no. 4 (2008).  https://doi.org/10.2168/lmcs-4(4:4)2008
  11. 11.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled Markov processes. Theor. Comput. Sci. 318(3), 323–354 (2004).  https://doi.org/10.1016/j.tcs.2003.09.013MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Desharnais, J., Jagadeesan, R., Gupta, V., Panangaden, P.: The metric analogue of weak bisimulation for probabilistic processes. In: Proceedings of 17th Annual IEEE Symposium on Logic in Computer Science, LICS 2002, Copenhagen, July 2002, pp. 413–422. IEEE CS Press, Washington, DC (2002).  https://doi.org/10.1109/lics.2002.1029849
  13. 13.
    Du, W., Deng, Y., Gebler, D.: Behavioural pseudometrics for nondeterministic probabilistic systems. In: Fränzle, M., Kapur, D., Zhan, N. (eds.) SETTA 2016. LNCS, vol. 9984, pp. 67–84. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-47677-3_5CrossRefGoogle Scholar
  14. 14.
    Fränzle, M., Hahn, E.M., Hermanns, H., Wolovick, N., Zhang, L.: Measurability and safety verification for stochastic hybrid systems. In: Proceedings of 14th ACM International Conference on Hybrid Systems: Computation and Control, HSCC 2011, Chicago, IL, April 2011, pp. 43–52. ACM Press, New York (2011).  https://doi.org/10.1145/1967701.1967710
  15. 15.
    Gebler, D., Larsen, K.G., Tini, S.: Compositional bisimulation metric reasoning with probabilistic process calculi. Log. Methods Comput. Sci. 12(4), Article no. 12 (2016).  https://doi.org/10.2168/lmcs-12(4:12)2016
  16. 16.
    Gebler, D., Tini, S.: SOS specifications for uniformly continuous operators. J. Comput. Syst. Sci. 92, 113–151 (2018).  https://doi.org/10.1016/j.jcss.2017.09.011MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.-P.: A compositional modelling and analysis framework for stochastic hybrid systems. Form. Methods Syst. Des. 43(2), 191–232 (2013).  https://doi.org/10.1007/s10703-012-0167-zCrossRefzbMATHGoogle Scholar
  18. 18.
    Hennessy, M., Regan, T.: A process algebra for timed systems. Inf. Comput. 117(2), 221–23 (1995).  https://doi.org/10.1006/inco.1995.1041MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Englewood Cliffs (1985)zbMATHGoogle Scholar
  20. 20.
    Hu, J., Lygeros, J., Sastry, S.: Towards a theory of stochastic hybrid systems. In: Lynch, N., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 160–173. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-46430-1_16CrossRefzbMATHGoogle Scholar
  21. 21.
    Lanotte, R., Merro, M.: A calculus of cyber-physical systems. In: Drewes, F., Martín-Vide, C., Truthe, B. (eds.) LATA 2017. LNCS, vol. 10168, pp. 115–127. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-53733-7_8CrossRefGoogle Scholar
  22. 22.
    Lanotte, R., Merro, M., Muradore, R., Viganò, L.: A formal approach to cyber-physical attacks. In: Proceedings of 30th IEEE Computer Security Foundations Symposium, CSF 2017, Santa Barbara, CA, August 2017, pp. 436–450. IEEE CS Press, Washington, DC (2017).  https://doi.org/10.1109/csf.2017.12
  23. 23.
    Lanotte, R., Merro, M., Tini, S.: Compositional weak metrics for group key update. In: Larsen, K.G., Bodlaender, H.L., Raskin, J.-F. (eds.) Proceedings of 42nd International Symposium on Mathematical Foundations of Computer Science, MFCS 2017. Leibniz International Proceedings in Informatics, Aalborg, August 2017, vol. 42, Article no. 72. Dagstuhl Publishing, Saarbrücken/Wadern (2017).  https://doi.org/10.4230/lipics.mfcs.2017.72
  24. 24.
    Lanotte, R., Merro, M., Tini, S.: Equational reasonings in wireless network gossip protocols. arXiv preprint 1707.03215 (2017). https://arxiv.org/abs/1707.03215
  25. 25.
    Lanotte, R., Merro, M., Tini, S.: Weak simulation quasimetric in a gossip scenario. In: Bouajjani, A., Silva, A. (eds.) FORTE 2017. LNCS, vol. 10321, pp. 139–155. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60225-7_10CrossRefGoogle Scholar
  26. 26.
    Lanotte, R., Merro, M., Tini, S.: Towards a formal notion of impact metric for cyber-physical attacks. In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS, vol. 11023, pp. 296–315. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-98938-9_17CrossRefGoogle Scholar
  27. 27.
    Lanotte, R., Merro, M., Tini, S.: A probabilistic calculus of cyber-physical systems. Inf. Comput. (to appear)Google Scholar
  28. 28.
    Schiller, R.L.: Measures, Integrals and Martingales. Cambridge University Press, Cambridge (2005).  https://doi.org/10.1017/cbo9780511810886CrossRefGoogle Scholar
  29. 29.
    Segala, R.: Modeling and verification of randomized distributed real-time systems. Ph.D. thesis, MIT, Cambridge, MA (1995)Google Scholar
  30. 30.
    Sproston, J.: Decidable model checking of probabilistic hybrid automata. In: Joseph, M. (ed.) FTRTFT 2000. LNCS, vol. 1926, pp. 31–45. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-45352-0_5CrossRefGoogle Scholar
  31. 31.
    van Breugel, F., Worrell, J.: A behavioural pseudometric for probabilistic transition systems. Theor. Comput. Sci. 331(1), 115–142 (2005).  https://doi.org/10.1016/j.tcs.2004.09.035MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Villani, C.: Optimal Transport, Old and New. Grundlehren der mathematischen Wissenschaften, vol. 338. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-71050-9CrossRefzbMATHGoogle Scholar
  33. 33.
    Wang, S., Zhan, N., Zhang, L.: A compositional modelling and verification framework for stochastic hybrid systems. Form. Aspects Comput. 29(4), 751–775 (2017).  https://doi.org/10.1007/s00165-017-0421-7MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Dipartimento di Scienza e Alta TecnologiaUniversità degli Studi dell’InsubriaComoItaly

Personalised recommendations