Other Functions and Relations

  • Ian M. Hodge


This chapter describes mathematics that are specifically applicable to relaxation phenomena but not restricted to the frequency domain. In particular Sect. 3.7 gives fundamental derivations of relations between frequency domain functions and relaxation time distributions.


  1. 1.
    Stegun, I., Abramowitz, M.: Handbook of Mathematical Functions. Dover, New York (1965)
  2. 2.
    Pais, A.: Inward Bound. Oxford University Press, London (1986)Google Scholar
  3. 3.
    Evans, J.W., Gragg, W.B., LeVeque, R.J.: Math. Comp. 34, 149–203 (1980)CrossRefGoogle Scholar
  4. 4.
    Fuoss, R.M., Kirkwood, J.G.: J. Am. Chem. Soc. 63, 385 (1941)CrossRefGoogle Scholar
  5. 5.
    Titchmarsh, E.C.: The Theory of Functions, 2nd edn. Oxford University Press, London (1948)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ian M. Hodge
    • 1
  1. 1.School of Physics and Astronomy (retired)Rochester Institute of TechnologyRochesterUSA

Personalised recommendations